Loading…

Reaction Acceleration in Electrospray Droplets: Size, Distance, and Surfactant Effects

Phenylhydrazone formation from isatin is used to examine the effects on the reaction rate of (i) electrospray emitter distance from the mass spectrometer (MS) inlet, (ii) emitter tip diameter, and (iii) presence of surfactant. Reaction rates are characterized through measurement of conversion ratios...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Society for Mass Spectrometry 2019-10, Vol.30 (10), p.2022-2030
Main Authors: Marsh, Brett M., Iyer, Kiran, Cooks, R. Graham
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phenylhydrazone formation from isatin is used to examine the effects on the reaction rate of (i) electrospray emitter distance from the mass spectrometer (MS) inlet, (ii) emitter tip diameter, and (iii) presence of surfactant. Reaction rates are characterized through measurement of conversion ratios. It is found that there is an increase in the conversion ratio as (i) the electrospray source is moved further from the inlet of the mass spectrometer, (ii) smaller sprayer diameters are used, and (iii) when surfactants are present. Each of these experimental operations is associated with an increase in reaction rate and with a decrease in average droplet sizes. The size measurements are made using super resolution microscopy from the “splash” on a collector surface produced by a fluorescent marker sprayed using conditions similar to those used for the reaction mixture. This measurement showed that droplets undergo significant evaporation as a function of distance of flight, thereby increasing their surface to volume ratios. Similarly, the effect of nanoelectrospray emitter size on conversion ratio is also found to be associated with changes in droplet size for which a 4 to 10 times increase in reaction rate is seen using tip diameters ranging from 20 μm down to 1 μm. Finally, the effects of surfactants in producing smaller droplets with corresponding large increases in reaction rate are demonstrated by splash microscopy. These findings point to reaction acceleration being strongly associated with reactions at the surfaces of microdroplets.
ISSN:1044-0305
1879-1123
DOI:10.1007/s13361-019-02264-w