Loading…
Field-Effect Controllable Metallic Josephson Interferometer
Gate-tunable Josephson junctions (JJs) are the backbone of superconducting classical and quantum computation. Typically, these systems exploit low-charge-concentration materials and present technological difficulties limiting their scalability. Surprisingly, electric field modulation of a supercurre...
Saved in:
Published in: | Nano letters 2019-09, Vol.19 (9), p.6263-6269 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Gate-tunable Josephson junctions (JJs) are the backbone of superconducting classical and quantum computation. Typically, these systems exploit low-charge-concentration materials and present technological difficulties limiting their scalability. Surprisingly, electric field modulation of a supercurrent in metallic wires and JJs has been recently demonstrated. Here, we report the realization of titanium-based monolithic interferometers which allow tuning both JJs independently via voltage bias applied to capacitively coupled electrodes. Our experiments demonstrate full control of the amplitude of the switching current (I s) and of the superconducting phase across the single JJ in a wide range of temperatures. Astoundingly, by gate-biasing a single junction, the maximum achievable total I s is suppressed down to values much lower than the critical current of a single JJ. A theoretical model including gate-induced phase fluctuations on a single junction accounts for our experimental findings. This class of quantum interferometers could represent a breakthrough for several applications such as digital electronics, quantum computing, sensitive magnetometry, and single-photon detection. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.9b02369 |