Loading…

Assessing the role of migratory birds in the introduction of ticks and tick-borne pathogens from African countries: An Italian experience

The continuous flow of billions of birds between Africa and Europe creates an “ecological bridge” between physically remote areas. Migratory birds fly south from their breeding grounds during late summer/fall and fly back in spring. These movements regulate the spread of internal and external parasi...

Full description

Saved in:
Bibliographic Details
Published in:Ticks and tick-borne diseases 2019-10, Vol.10 (6), p.101272-101272, Article 101272
Main Authors: Pascucci, Ilaria, Di Domenico, Marco, Capobianco Dondona, Giulia, Di Gennaro, Annapia, Polci, Andrea, Capobianco Dondona, Andrea, Mancuso, Elisa, Cammà, Cesare, Savini, Giovanni, Cecere, Jacopo G., Spina, Fernando, Monaco, Federica
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The continuous flow of billions of birds between Africa and Europe creates an “ecological bridge” between physically remote areas. Migratory birds fly south from their breeding grounds during late summer/fall and fly back in spring. These movements regulate the spread of internal and external parasites, as well as pathogens of potential public health concern. The aim of the present study was to investigate the possible introduction of exotic tick species and tick-borne pathogens into Europe via migratory birds. At the bird observatory of Ventotene island (Italy), 443 feeding ticks were collected from 249 birds captured and ringed during their northbound migration in spring 2013. Each tick was identified by morphological and molecular methods and then tested for bacterial and viral pathogens: Borrelia burgdorferi s.l., Rickettsia spp., Ehrlichia ruminantium and Coxiella burnetii, Crimean Congo haemorrhagic fever virus (CCHFV) and Flavivirus. Morphological and molecular identification confirmed Hyalomma rufipes as the most abundant species among the collected arthropods (366/443; 82.6%) followed by Hyalomma marginatum (10/433; 2.3%). Rickettsia aeschlimannii was identified in 158 ticks, while one engorged Amblyomma variegatum nymph was infected with Rickettsia africae. The other bacteria were not detected in any specimen. Among viruses, RNA belonging to West Nile virus and other Flavivirus were detected whereas all ticks were negative for CCHFV RNA. These results confirm how migratory birds play a role in carrying Rickettsia-infected ticks, as well as viruses of zoonotic importance, from Africa into Europe. To what extent tick species are capable of establishing a permanent population once introduced in naïve areas, is far from defined and deserve further investigation.
ISSN:1877-959X
1877-9603
DOI:10.1016/j.ttbdis.2019.101272