Loading…
The attenuating effects of pyridoxamine on adipocyte hypertrophy and inflammation differ by adipocyte location
It is known that receptor for advanced glycation end products (RAGE) and its ligands accumulate in the fat tissues of obese individuals, and RAGE ligands induce M1 macrophage polarization, which in turn induces inflammation. We evaluated the effect of pyridoxamine on RAGE ligand accumulation and M1...
Saved in:
Published in: | The Journal of nutritional biochemistry 2019-10, Vol.72, p.108173-108173, Article 108173 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is known that receptor for advanced glycation end products (RAGE) and its ligands accumulate in the fat tissues of obese individuals, and RAGE ligands induce M1 macrophage polarization, which in turn induces inflammation. We evaluated the effect of pyridoxamine on RAGE ligand accumulation and M1 polarization in the visceral, subcutaneous, and perivascular fat tissues of Sprague-Dawley rats fed a high fat diet (HFD).
Pyridoxamine reduced HFD-induced weight gain, attenuated adipocyte size increases, RAGE ligand accumulations, RAGE-RAGE ligands binding, decreased macrophage M1 polarization and increased M2 polarization in visceral fat tissues, but not in subcutaneous tissues. Pyridoxamine induced glyoxalase 1 (Glo-1) expression in visceral fat in the HFD group, whereas pyridoxamine induced Glo-1 expression in perivascular fat tissues was no higher than that observed in the normal fat diet (NFD) controls. In vitro, pyridoxamine suppressed the release of RAGE ligands from AGE treated macrophages, but non-significantly attenuated RAGE ligands release in AGE treated adipocytes.
Pyridoxamine was found to suppress weight increases and M1 polarization, and to increase Glo-1 expression through the RAGE pathway in perivascular and visceral fat tissues of HFD-induced obese rats. These findings suggest pyridoxamine is a candidate for the treatment of obesity or complications related to obesity-induced inflammation. |
---|---|
ISSN: | 0955-2863 1873-4847 |
DOI: | 10.1016/j.jnutbio.2019.04.001 |