Loading…
Magnetic polymer–supported adsorbent with two functional adsorption sites for phosphate removal
In this paper, a new magnetic polymer–supported phosphate adsorbent MPVC-EDA-Ce was prepared by loading cerium (hydr)oxides onto ethylenediamine-functionalized polyvinyl chloride for the first time. MPVC-EDA-Ce showed excellent adsorption performances towards phosphate and easy recovery. The adsorpt...
Saved in:
Published in: | Environmental science and pollution research international 2019-11, Vol.26 (32), p.33269-33280 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a new magnetic polymer–supported phosphate adsorbent MPVC-EDA-Ce was prepared by loading cerium (hydr)oxides onto ethylenediamine-functionalized polyvinyl chloride for the first time. MPVC-EDA-Ce showed excellent adsorption performances towards phosphate and easy recovery. The adsorption isotherm and kinetics of MPVC-EDA-Ce followed Langmuir monolayer model and the pseudo-second-order model, respectively. The pH results demonstrated that the MPVC-EDA-Ce could effectively remove phosphate in a wide range of pH with insignificant cerium leaching. Furthermore, analyses on adsorption mechanism and effect of competing anions demonstrated the formation of strong inner-sphere complexation between cerium (hydr)oxides and phosphate, which was a selective adsorption process, while positively charged quaternary ammonium groups adsorbed phosphate via relatively weak electrostatic attraction which was a non-selective adsorption process. The study provided a good reference to design novel phosphate adsorbents with two even more functional adsorption sites and a deep insight to investigate the adsorption mechanism towards phosphate. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-019-06351-z |