Loading…

Magnetic polymer–supported adsorbent with two functional adsorption sites for phosphate removal

In this paper, a new magnetic polymer–supported phosphate adsorbent MPVC-EDA-Ce was prepared by loading cerium (hydr)oxides onto ethylenediamine-functionalized polyvinyl chloride for the first time. MPVC-EDA-Ce showed excellent adsorption performances towards phosphate and easy recovery. The adsorpt...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2019-11, Vol.26 (32), p.33269-33280
Main Authors: Li, Ting, Huang, Pengwei, Liao, Taiwan, Guo, Jia, Yu, Xiang, Han, Boping, Peng, Liang, Zhu, Yi, Zhang, Yuanming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a new magnetic polymer–supported phosphate adsorbent MPVC-EDA-Ce was prepared by loading cerium (hydr)oxides onto ethylenediamine-functionalized polyvinyl chloride for the first time. MPVC-EDA-Ce showed excellent adsorption performances towards phosphate and easy recovery. The adsorption isotherm and kinetics of MPVC-EDA-Ce followed Langmuir monolayer model and the pseudo-second-order model, respectively. The pH results demonstrated that the MPVC-EDA-Ce could effectively remove phosphate in a wide range of pH with insignificant cerium leaching. Furthermore, analyses on adsorption mechanism and effect of competing anions demonstrated the formation of strong inner-sphere complexation between cerium (hydr)oxides and phosphate, which was a selective adsorption process, while positively charged quaternary ammonium groups adsorbed phosphate via relatively weak electrostatic attraction which was a non-selective adsorption process. The study provided a good reference to design novel phosphate adsorbents with two even more functional adsorption sites and a deep insight to investigate the adsorption mechanism towards phosphate.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-019-06351-z