Loading…
Machine learning based risk prediction model for asymptomatic individuals who underwent coronary artery calcium score: Comparison with traditional risk prediction approaches
Machine learning (ML) is a computer algorithm used to identify patterns for prediction in various tasks, and ML methods have been beneficial for developing prediction models when applied to heterogeneous and large datasets. We aim to examine the prognostic ability of a ML-based prediction algorithm...
Saved in:
Published in: | Journal of cardiovascular computed tomography 2020-03, Vol.14 (2), p.168-176 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Machine learning (ML) is a computer algorithm used to identify patterns for prediction in various tasks, and ML methods have been beneficial for developing prediction models when applied to heterogeneous and large datasets. We aim to examine the prognostic ability of a ML-based prediction algorithm utilizing routine health checkup data to predict all-cause mortality (ACM) compared to established risk prediction approaches.
A total 86155 patients with seventy available parameters (35 clinical, 32 laboratory, and 3 coronary artery calcium score [CACS] parameters) were analyzed. ML involved feature selection, splitting data randomly into a training (70%) and test set (30%), and model building with a boosted ensemble algorithm. The developed ML model was validated in a separate cohort of 4915 patients. The performance of ML for predicting ACM was compared with the following models: (i) the Framingham risk score (FRS) + CACS, (ii) atherosclerotic cardiovascular disease (ASCVD) + CACS, with (iii) logistic regression (LR) model.
In the derivation dataset, 690 patients died during the median 4.6-year follow-up (interquartile range, 3.0–6.6 years). The AUC value in the ML model was significantly higher than the other models in test set (ML: 0.82, FRS + CACS: 0.70, ASCVD + CACS: 0.74; LR model: 0.79, p |
---|---|
ISSN: | 1934-5925 1876-861X |
DOI: | 10.1016/j.jcct.2019.09.005 |