Loading…
Machine learning based risk prediction model for asymptomatic individuals who underwent coronary artery calcium score: Comparison with traditional risk prediction approaches
Machine learning (ML) is a computer algorithm used to identify patterns for prediction in various tasks, and ML methods have been beneficial for developing prediction models when applied to heterogeneous and large datasets. We aim to examine the prognostic ability of a ML-based prediction algorithm...
Saved in:
Published in: | Journal of cardiovascular computed tomography 2020-03, Vol.14 (2), p.168-176 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c356t-7564e2bc2d6b7a85bb5262832d347687de59dec8a38e4af13fcb85bc539ddf0d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-7564e2bc2d6b7a85bb5262832d347687de59dec8a38e4af13fcb85bc539ddf0d3 |
container_end_page | 176 |
container_issue | 2 |
container_start_page | 168 |
container_title | Journal of cardiovascular computed tomography |
container_volume | 14 |
creator | Han, Donghee Kolli, Kranthi K. Gransar, Heidi Lee, Ji Hyun Choi, Su-Yeon Chun, Eun Ju Han, Hae-Won Park, Sung Hak Sung, Jidong Jung, Hae Ok Min, James K. Chang, Hyuk-Jae |
description | Machine learning (ML) is a computer algorithm used to identify patterns for prediction in various tasks, and ML methods have been beneficial for developing prediction models when applied to heterogeneous and large datasets. We aim to examine the prognostic ability of a ML-based prediction algorithm utilizing routine health checkup data to predict all-cause mortality (ACM) compared to established risk prediction approaches.
A total 86155 patients with seventy available parameters (35 clinical, 32 laboratory, and 3 coronary artery calcium score [CACS] parameters) were analyzed. ML involved feature selection, splitting data randomly into a training (70%) and test set (30%), and model building with a boosted ensemble algorithm. The developed ML model was validated in a separate cohort of 4915 patients. The performance of ML for predicting ACM was compared with the following models: (i) the Framingham risk score (FRS) + CACS, (ii) atherosclerotic cardiovascular disease (ASCVD) + CACS, with (iii) logistic regression (LR) model.
In the derivation dataset, 690 patients died during the median 4.6-year follow-up (interquartile range, 3.0–6.6 years). The AUC value in the ML model was significantly higher than the other models in test set (ML: 0.82, FRS + CACS: 0.70, ASCVD + CACS: 0.74; LR model: 0.79, p |
doi_str_mv | 10.1016/j.jcct.2019.09.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2299768488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1934592519302552</els_id><sourcerecordid>2299768488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-7564e2bc2d6b7a85bb5262832d347687de59dec8a38e4af13fcb85bc539ddf0d3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEoqXwAiyQl2wy-CdOHMQGjcqP1IpNkdhZjn3DeEjsYDsd9aH6jtzRFDZIla50Lfm75_j6VNVrRjeMsvbdfrO3tmw4Zf2GYlH5pDpnqmtr1bIfT_Hci6aWPZdn1Yuc9wh0jKrn1ZlgsqOCi_Pq_trYnQ9AJjAp-PCTDCaDI8nnX2RJ4LwtPgYyRwcTGWMiJt_NS4mzKd4SH5y_9W41UyaHXSRrcJAOEAqxMcVg0h0xqQA2aybr15lkvID3ZBvnxaAJSh982ZGSjPNHJzP9522WJUV8JuSX1bMRreDVQ7-ovn-6vNl-qa--ff66_XhVWyHbUneybYAPlrt26IySwyB5y5XgTjRdqzoHsndglREKGjMyMdoBKStF79xInbio3p500fj3Crno2WcL02QCxDVrzvsehRqlEOUn1KaYc4JRL8nPuLhmVB9j0nt9jEkfY9IUi0ocevOgvw4zuH8jf3NB4MMJANzy1kPS2XoIFv8kAYq56B_T_wMukqpO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299768488</pqid></control><display><type>article</type><title>Machine learning based risk prediction model for asymptomatic individuals who underwent coronary artery calcium score: Comparison with traditional risk prediction approaches</title><source>ScienceDirect Freedom Collection</source><creator>Han, Donghee ; Kolli, Kranthi K. ; Gransar, Heidi ; Lee, Ji Hyun ; Choi, Su-Yeon ; Chun, Eun Ju ; Han, Hae-Won ; Park, Sung Hak ; Sung, Jidong ; Jung, Hae Ok ; Min, James K. ; Chang, Hyuk-Jae</creator><creatorcontrib>Han, Donghee ; Kolli, Kranthi K. ; Gransar, Heidi ; Lee, Ji Hyun ; Choi, Su-Yeon ; Chun, Eun Ju ; Han, Hae-Won ; Park, Sung Hak ; Sung, Jidong ; Jung, Hae Ok ; Min, James K. ; Chang, Hyuk-Jae</creatorcontrib><description>Machine learning (ML) is a computer algorithm used to identify patterns for prediction in various tasks, and ML methods have been beneficial for developing prediction models when applied to heterogeneous and large datasets. We aim to examine the prognostic ability of a ML-based prediction algorithm utilizing routine health checkup data to predict all-cause mortality (ACM) compared to established risk prediction approaches.
A total 86155 patients with seventy available parameters (35 clinical, 32 laboratory, and 3 coronary artery calcium score [CACS] parameters) were analyzed. ML involved feature selection, splitting data randomly into a training (70%) and test set (30%), and model building with a boosted ensemble algorithm. The developed ML model was validated in a separate cohort of 4915 patients. The performance of ML for predicting ACM was compared with the following models: (i) the Framingham risk score (FRS) + CACS, (ii) atherosclerotic cardiovascular disease (ASCVD) + CACS, with (iii) logistic regression (LR) model.
In the derivation dataset, 690 patients died during the median 4.6-year follow-up (interquartile range, 3.0–6.6 years). The AUC value in the ML model was significantly higher than the other models in test set (ML: 0.82, FRS + CACS: 0.70, ASCVD + CACS: 0.74; LR model: 0.79, p < 0.05 for all), but not statistically significantly higher in validation set (ML: 0.78, FRS + CACS: 0.62, ASCVD + CACS: 0.72; LR model: 0.74, p: 0.572 and 0.625 for ASCVD + CACS and LR model, respectively). The ML model improved reclassification over the other models in low to intermediate risk patients (p < 0.001 for all).
The prediction algorithm derived by ML methods showed a robust ability to predict ACM and improved reclassification over established conventional risk prediction approaches in asymptomatic population undergoing a health checkup.</description><identifier>ISSN: 1934-5925</identifier><identifier>EISSN: 1876-861X</identifier><identifier>DOI: 10.1016/j.jcct.2019.09.005</identifier><identifier>PMID: 31570323</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><ispartof>Journal of cardiovascular computed tomography, 2020-03, Vol.14 (2), p.168-176</ispartof><rights>2020 Society of Cardiovascular Computed Tomography</rights><rights>Copyright © 2020 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-7564e2bc2d6b7a85bb5262832d347687de59dec8a38e4af13fcb85bc539ddf0d3</citedby><cites>FETCH-LOGICAL-c356t-7564e2bc2d6b7a85bb5262832d347687de59dec8a38e4af13fcb85bc539ddf0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31570323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Donghee</creatorcontrib><creatorcontrib>Kolli, Kranthi K.</creatorcontrib><creatorcontrib>Gransar, Heidi</creatorcontrib><creatorcontrib>Lee, Ji Hyun</creatorcontrib><creatorcontrib>Choi, Su-Yeon</creatorcontrib><creatorcontrib>Chun, Eun Ju</creatorcontrib><creatorcontrib>Han, Hae-Won</creatorcontrib><creatorcontrib>Park, Sung Hak</creatorcontrib><creatorcontrib>Sung, Jidong</creatorcontrib><creatorcontrib>Jung, Hae Ok</creatorcontrib><creatorcontrib>Min, James K.</creatorcontrib><creatorcontrib>Chang, Hyuk-Jae</creatorcontrib><title>Machine learning based risk prediction model for asymptomatic individuals who underwent coronary artery calcium score: Comparison with traditional risk prediction approaches</title><title>Journal of cardiovascular computed tomography</title><addtitle>J Cardiovasc Comput Tomogr</addtitle><description>Machine learning (ML) is a computer algorithm used to identify patterns for prediction in various tasks, and ML methods have been beneficial for developing prediction models when applied to heterogeneous and large datasets. We aim to examine the prognostic ability of a ML-based prediction algorithm utilizing routine health checkup data to predict all-cause mortality (ACM) compared to established risk prediction approaches.
A total 86155 patients with seventy available parameters (35 clinical, 32 laboratory, and 3 coronary artery calcium score [CACS] parameters) were analyzed. ML involved feature selection, splitting data randomly into a training (70%) and test set (30%), and model building with a boosted ensemble algorithm. The developed ML model was validated in a separate cohort of 4915 patients. The performance of ML for predicting ACM was compared with the following models: (i) the Framingham risk score (FRS) + CACS, (ii) atherosclerotic cardiovascular disease (ASCVD) + CACS, with (iii) logistic regression (LR) model.
In the derivation dataset, 690 patients died during the median 4.6-year follow-up (interquartile range, 3.0–6.6 years). The AUC value in the ML model was significantly higher than the other models in test set (ML: 0.82, FRS + CACS: 0.70, ASCVD + CACS: 0.74; LR model: 0.79, p < 0.05 for all), but not statistically significantly higher in validation set (ML: 0.78, FRS + CACS: 0.62, ASCVD + CACS: 0.72; LR model: 0.74, p: 0.572 and 0.625 for ASCVD + CACS and LR model, respectively). The ML model improved reclassification over the other models in low to intermediate risk patients (p < 0.001 for all).
The prediction algorithm derived by ML methods showed a robust ability to predict ACM and improved reclassification over established conventional risk prediction approaches in asymptomatic population undergoing a health checkup.</description><issn>1934-5925</issn><issn>1876-861X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhSMEoqXwAiyQl2wy-CdOHMQGjcqP1IpNkdhZjn3DeEjsYDsd9aH6jtzRFDZIla50Lfm75_j6VNVrRjeMsvbdfrO3tmw4Zf2GYlH5pDpnqmtr1bIfT_Hci6aWPZdn1Yuc9wh0jKrn1ZlgsqOCi_Pq_trYnQ9AJjAp-PCTDCaDI8nnX2RJ4LwtPgYyRwcTGWMiJt_NS4mzKd4SH5y_9W41UyaHXSRrcJAOEAqxMcVg0h0xqQA2aybr15lkvID3ZBvnxaAJSh982ZGSjPNHJzP9522WJUV8JuSX1bMRreDVQ7-ovn-6vNl-qa--ff66_XhVWyHbUneybYAPlrt26IySwyB5y5XgTjRdqzoHsndglREKGjMyMdoBKStF79xInbio3p500fj3Crno2WcL02QCxDVrzvsehRqlEOUn1KaYc4JRL8nPuLhmVB9j0nt9jEkfY9IUi0ocevOgvw4zuH8jf3NB4MMJANzy1kPS2XoIFv8kAYq56B_T_wMukqpO</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Han, Donghee</creator><creator>Kolli, Kranthi K.</creator><creator>Gransar, Heidi</creator><creator>Lee, Ji Hyun</creator><creator>Choi, Su-Yeon</creator><creator>Chun, Eun Ju</creator><creator>Han, Hae-Won</creator><creator>Park, Sung Hak</creator><creator>Sung, Jidong</creator><creator>Jung, Hae Ok</creator><creator>Min, James K.</creator><creator>Chang, Hyuk-Jae</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202003</creationdate><title>Machine learning based risk prediction model for asymptomatic individuals who underwent coronary artery calcium score: Comparison with traditional risk prediction approaches</title><author>Han, Donghee ; Kolli, Kranthi K. ; Gransar, Heidi ; Lee, Ji Hyun ; Choi, Su-Yeon ; Chun, Eun Ju ; Han, Hae-Won ; Park, Sung Hak ; Sung, Jidong ; Jung, Hae Ok ; Min, James K. ; Chang, Hyuk-Jae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-7564e2bc2d6b7a85bb5262832d347687de59dec8a38e4af13fcb85bc539ddf0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Donghee</creatorcontrib><creatorcontrib>Kolli, Kranthi K.</creatorcontrib><creatorcontrib>Gransar, Heidi</creatorcontrib><creatorcontrib>Lee, Ji Hyun</creatorcontrib><creatorcontrib>Choi, Su-Yeon</creatorcontrib><creatorcontrib>Chun, Eun Ju</creatorcontrib><creatorcontrib>Han, Hae-Won</creatorcontrib><creatorcontrib>Park, Sung Hak</creatorcontrib><creatorcontrib>Sung, Jidong</creatorcontrib><creatorcontrib>Jung, Hae Ok</creatorcontrib><creatorcontrib>Min, James K.</creatorcontrib><creatorcontrib>Chang, Hyuk-Jae</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cardiovascular computed tomography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Donghee</au><au>Kolli, Kranthi K.</au><au>Gransar, Heidi</au><au>Lee, Ji Hyun</au><au>Choi, Su-Yeon</au><au>Chun, Eun Ju</au><au>Han, Hae-Won</au><au>Park, Sung Hak</au><au>Sung, Jidong</au><au>Jung, Hae Ok</au><au>Min, James K.</au><au>Chang, Hyuk-Jae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning based risk prediction model for asymptomatic individuals who underwent coronary artery calcium score: Comparison with traditional risk prediction approaches</atitle><jtitle>Journal of cardiovascular computed tomography</jtitle><addtitle>J Cardiovasc Comput Tomogr</addtitle><date>2020-03</date><risdate>2020</risdate><volume>14</volume><issue>2</issue><spage>168</spage><epage>176</epage><pages>168-176</pages><issn>1934-5925</issn><eissn>1876-861X</eissn><abstract>Machine learning (ML) is a computer algorithm used to identify patterns for prediction in various tasks, and ML methods have been beneficial for developing prediction models when applied to heterogeneous and large datasets. We aim to examine the prognostic ability of a ML-based prediction algorithm utilizing routine health checkup data to predict all-cause mortality (ACM) compared to established risk prediction approaches.
A total 86155 patients with seventy available parameters (35 clinical, 32 laboratory, and 3 coronary artery calcium score [CACS] parameters) were analyzed. ML involved feature selection, splitting data randomly into a training (70%) and test set (30%), and model building with a boosted ensemble algorithm. The developed ML model was validated in a separate cohort of 4915 patients. The performance of ML for predicting ACM was compared with the following models: (i) the Framingham risk score (FRS) + CACS, (ii) atherosclerotic cardiovascular disease (ASCVD) + CACS, with (iii) logistic regression (LR) model.
In the derivation dataset, 690 patients died during the median 4.6-year follow-up (interquartile range, 3.0–6.6 years). The AUC value in the ML model was significantly higher than the other models in test set (ML: 0.82, FRS + CACS: 0.70, ASCVD + CACS: 0.74; LR model: 0.79, p < 0.05 for all), but not statistically significantly higher in validation set (ML: 0.78, FRS + CACS: 0.62, ASCVD + CACS: 0.72; LR model: 0.74, p: 0.572 and 0.625 for ASCVD + CACS and LR model, respectively). The ML model improved reclassification over the other models in low to intermediate risk patients (p < 0.001 for all).
The prediction algorithm derived by ML methods showed a robust ability to predict ACM and improved reclassification over established conventional risk prediction approaches in asymptomatic population undergoing a health checkup.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31570323</pmid><doi>10.1016/j.jcct.2019.09.005</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1934-5925 |
ispartof | Journal of cardiovascular computed tomography, 2020-03, Vol.14 (2), p.168-176 |
issn | 1934-5925 1876-861X |
language | eng |
recordid | cdi_proquest_miscellaneous_2299768488 |
source | ScienceDirect Freedom Collection |
title | Machine learning based risk prediction model for asymptomatic individuals who underwent coronary artery calcium score: Comparison with traditional risk prediction approaches |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A20%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20based%20risk%20prediction%20model%20for%20asymptomatic%20individuals%20who%20underwent%20coronary%20artery%20calcium%20score:%20Comparison%20with%20traditional%20risk%20prediction%20approaches&rft.jtitle=Journal%20of%20cardiovascular%20computed%20tomography&rft.au=Han,%20Donghee&rft.date=2020-03&rft.volume=14&rft.issue=2&rft.spage=168&rft.epage=176&rft.pages=168-176&rft.issn=1934-5925&rft.eissn=1876-861X&rft_id=info:doi/10.1016/j.jcct.2019.09.005&rft_dat=%3Cproquest_cross%3E2299768488%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-7564e2bc2d6b7a85bb5262832d347687de59dec8a38e4af13fcb85bc539ddf0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2299768488&rft_id=info:pmid/31570323&rfr_iscdi=true |