Loading…

Machine learning based risk prediction model for asymptomatic individuals who underwent coronary artery calcium score: Comparison with traditional risk prediction approaches

Machine learning (ML) is a computer algorithm used to identify patterns for prediction in various tasks, and ML methods have been beneficial for developing prediction models when applied to heterogeneous and large datasets. We aim to examine the prognostic ability of a ML-based prediction algorithm...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cardiovascular computed tomography 2020-03, Vol.14 (2), p.168-176
Main Authors: Han, Donghee, Kolli, Kranthi K., Gransar, Heidi, Lee, Ji Hyun, Choi, Su-Yeon, Chun, Eun Ju, Han, Hae-Won, Park, Sung Hak, Sung, Jidong, Jung, Hae Ok, Min, James K., Chang, Hyuk-Jae
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-7564e2bc2d6b7a85bb5262832d347687de59dec8a38e4af13fcb85bc539ddf0d3
cites cdi_FETCH-LOGICAL-c356t-7564e2bc2d6b7a85bb5262832d347687de59dec8a38e4af13fcb85bc539ddf0d3
container_end_page 176
container_issue 2
container_start_page 168
container_title Journal of cardiovascular computed tomography
container_volume 14
creator Han, Donghee
Kolli, Kranthi K.
Gransar, Heidi
Lee, Ji Hyun
Choi, Su-Yeon
Chun, Eun Ju
Han, Hae-Won
Park, Sung Hak
Sung, Jidong
Jung, Hae Ok
Min, James K.
Chang, Hyuk-Jae
description Machine learning (ML) is a computer algorithm used to identify patterns for prediction in various tasks, and ML methods have been beneficial for developing prediction models when applied to heterogeneous and large datasets. We aim to examine the prognostic ability of a ML-based prediction algorithm utilizing routine health checkup data to predict all-cause mortality (ACM) compared to established risk prediction approaches. A total 86155 patients with seventy available parameters (35 clinical, 32 laboratory, and 3 coronary artery calcium score [CACS] parameters) were analyzed. ML involved feature selection, splitting data randomly into a training (70%) and test set (30%), and model building with a boosted ensemble algorithm. The developed ML model was validated in a separate cohort of 4915 patients. The performance of ML for predicting ACM was compared with the following models: (i) the Framingham risk score (FRS) + CACS, (ii) atherosclerotic cardiovascular disease (ASCVD) + CACS, with (iii) logistic regression (LR) model. In the derivation dataset, 690 patients died during the median 4.6-year follow-up (interquartile range, 3.0–6.6 years). The AUC value in the ML model was significantly higher than the other models in test set (ML: 0.82, FRS + CACS: 0.70, ASCVD + CACS: 0.74; LR model: 0.79, p 
doi_str_mv 10.1016/j.jcct.2019.09.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2299768488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1934592519302552</els_id><sourcerecordid>2299768488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-7564e2bc2d6b7a85bb5262832d347687de59dec8a38e4af13fcb85bc539ddf0d3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEoqXwAiyQl2wy-CdOHMQGjcqP1IpNkdhZjn3DeEjsYDsd9aH6jtzRFDZIla50Lfm75_j6VNVrRjeMsvbdfrO3tmw4Zf2GYlH5pDpnqmtr1bIfT_Hci6aWPZdn1Yuc9wh0jKrn1ZlgsqOCi_Pq_trYnQ9AJjAp-PCTDCaDI8nnX2RJ4LwtPgYyRwcTGWMiJt_NS4mzKd4SH5y_9W41UyaHXSRrcJAOEAqxMcVg0h0xqQA2aybr15lkvID3ZBvnxaAJSh982ZGSjPNHJzP9522WJUV8JuSX1bMRreDVQ7-ovn-6vNl-qa--ff66_XhVWyHbUneybYAPlrt26IySwyB5y5XgTjRdqzoHsndglREKGjMyMdoBKStF79xInbio3p500fj3Crno2WcL02QCxDVrzvsehRqlEOUn1KaYc4JRL8nPuLhmVB9j0nt9jEkfY9IUi0ocevOgvw4zuH8jf3NB4MMJANzy1kPS2XoIFv8kAYq56B_T_wMukqpO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299768488</pqid></control><display><type>article</type><title>Machine learning based risk prediction model for asymptomatic individuals who underwent coronary artery calcium score: Comparison with traditional risk prediction approaches</title><source>ScienceDirect Freedom Collection</source><creator>Han, Donghee ; Kolli, Kranthi K. ; Gransar, Heidi ; Lee, Ji Hyun ; Choi, Su-Yeon ; Chun, Eun Ju ; Han, Hae-Won ; Park, Sung Hak ; Sung, Jidong ; Jung, Hae Ok ; Min, James K. ; Chang, Hyuk-Jae</creator><creatorcontrib>Han, Donghee ; Kolli, Kranthi K. ; Gransar, Heidi ; Lee, Ji Hyun ; Choi, Su-Yeon ; Chun, Eun Ju ; Han, Hae-Won ; Park, Sung Hak ; Sung, Jidong ; Jung, Hae Ok ; Min, James K. ; Chang, Hyuk-Jae</creatorcontrib><description>Machine learning (ML) is a computer algorithm used to identify patterns for prediction in various tasks, and ML methods have been beneficial for developing prediction models when applied to heterogeneous and large datasets. We aim to examine the prognostic ability of a ML-based prediction algorithm utilizing routine health checkup data to predict all-cause mortality (ACM) compared to established risk prediction approaches. A total 86155 patients with seventy available parameters (35 clinical, 32 laboratory, and 3 coronary artery calcium score [CACS] parameters) were analyzed. ML involved feature selection, splitting data randomly into a training (70%) and test set (30%), and model building with a boosted ensemble algorithm. The developed ML model was validated in a separate cohort of 4915 patients. The performance of ML for predicting ACM was compared with the following models: (i) the Framingham risk score (FRS) + CACS, (ii) atherosclerotic cardiovascular disease (ASCVD) + CACS, with (iii) logistic regression (LR) model. In the derivation dataset, 690 patients died during the median 4.6-year follow-up (interquartile range, 3.0–6.6 years). The AUC value in the ML model was significantly higher than the other models in test set (ML: 0.82, FRS + CACS: 0.70, ASCVD + CACS: 0.74; LR model: 0.79, p &lt; 0.05 for all), but not statistically significantly higher in validation set (ML: 0.78, FRS + CACS: 0.62, ASCVD + CACS: 0.72; LR model: 0.74, p: 0.572 and 0.625 for ASCVD + CACS and LR model, respectively). The ML model improved reclassification over the other models in low to intermediate risk patients (p &lt; 0.001 for all). The prediction algorithm derived by ML methods showed a robust ability to predict ACM and improved reclassification over established conventional risk prediction approaches in asymptomatic population undergoing a health checkup.</description><identifier>ISSN: 1934-5925</identifier><identifier>EISSN: 1876-861X</identifier><identifier>DOI: 10.1016/j.jcct.2019.09.005</identifier><identifier>PMID: 31570323</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><ispartof>Journal of cardiovascular computed tomography, 2020-03, Vol.14 (2), p.168-176</ispartof><rights>2020 Society of Cardiovascular Computed Tomography</rights><rights>Copyright © 2020 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-7564e2bc2d6b7a85bb5262832d347687de59dec8a38e4af13fcb85bc539ddf0d3</citedby><cites>FETCH-LOGICAL-c356t-7564e2bc2d6b7a85bb5262832d347687de59dec8a38e4af13fcb85bc539ddf0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31570323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Donghee</creatorcontrib><creatorcontrib>Kolli, Kranthi K.</creatorcontrib><creatorcontrib>Gransar, Heidi</creatorcontrib><creatorcontrib>Lee, Ji Hyun</creatorcontrib><creatorcontrib>Choi, Su-Yeon</creatorcontrib><creatorcontrib>Chun, Eun Ju</creatorcontrib><creatorcontrib>Han, Hae-Won</creatorcontrib><creatorcontrib>Park, Sung Hak</creatorcontrib><creatorcontrib>Sung, Jidong</creatorcontrib><creatorcontrib>Jung, Hae Ok</creatorcontrib><creatorcontrib>Min, James K.</creatorcontrib><creatorcontrib>Chang, Hyuk-Jae</creatorcontrib><title>Machine learning based risk prediction model for asymptomatic individuals who underwent coronary artery calcium score: Comparison with traditional risk prediction approaches</title><title>Journal of cardiovascular computed tomography</title><addtitle>J Cardiovasc Comput Tomogr</addtitle><description>Machine learning (ML) is a computer algorithm used to identify patterns for prediction in various tasks, and ML methods have been beneficial for developing prediction models when applied to heterogeneous and large datasets. We aim to examine the prognostic ability of a ML-based prediction algorithm utilizing routine health checkup data to predict all-cause mortality (ACM) compared to established risk prediction approaches. A total 86155 patients with seventy available parameters (35 clinical, 32 laboratory, and 3 coronary artery calcium score [CACS] parameters) were analyzed. ML involved feature selection, splitting data randomly into a training (70%) and test set (30%), and model building with a boosted ensemble algorithm. The developed ML model was validated in a separate cohort of 4915 patients. The performance of ML for predicting ACM was compared with the following models: (i) the Framingham risk score (FRS) + CACS, (ii) atherosclerotic cardiovascular disease (ASCVD) + CACS, with (iii) logistic regression (LR) model. In the derivation dataset, 690 patients died during the median 4.6-year follow-up (interquartile range, 3.0–6.6 years). The AUC value in the ML model was significantly higher than the other models in test set (ML: 0.82, FRS + CACS: 0.70, ASCVD + CACS: 0.74; LR model: 0.79, p &lt; 0.05 for all), but not statistically significantly higher in validation set (ML: 0.78, FRS + CACS: 0.62, ASCVD + CACS: 0.72; LR model: 0.74, p: 0.572 and 0.625 for ASCVD + CACS and LR model, respectively). The ML model improved reclassification over the other models in low to intermediate risk patients (p &lt; 0.001 for all). The prediction algorithm derived by ML methods showed a robust ability to predict ACM and improved reclassification over established conventional risk prediction approaches in asymptomatic population undergoing a health checkup.</description><issn>1934-5925</issn><issn>1876-861X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhSMEoqXwAiyQl2wy-CdOHMQGjcqP1IpNkdhZjn3DeEjsYDsd9aH6jtzRFDZIla50Lfm75_j6VNVrRjeMsvbdfrO3tmw4Zf2GYlH5pDpnqmtr1bIfT_Hci6aWPZdn1Yuc9wh0jKrn1ZlgsqOCi_Pq_trYnQ9AJjAp-PCTDCaDI8nnX2RJ4LwtPgYyRwcTGWMiJt_NS4mzKd4SH5y_9W41UyaHXSRrcJAOEAqxMcVg0h0xqQA2aybr15lkvID3ZBvnxaAJSh982ZGSjPNHJzP9522WJUV8JuSX1bMRreDVQ7-ovn-6vNl-qa--ff66_XhVWyHbUneybYAPlrt26IySwyB5y5XgTjRdqzoHsndglREKGjMyMdoBKStF79xInbio3p500fj3Crno2WcL02QCxDVrzvsehRqlEOUn1KaYc4JRL8nPuLhmVB9j0nt9jEkfY9IUi0ocevOgvw4zuH8jf3NB4MMJANzy1kPS2XoIFv8kAYq56B_T_wMukqpO</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Han, Donghee</creator><creator>Kolli, Kranthi K.</creator><creator>Gransar, Heidi</creator><creator>Lee, Ji Hyun</creator><creator>Choi, Su-Yeon</creator><creator>Chun, Eun Ju</creator><creator>Han, Hae-Won</creator><creator>Park, Sung Hak</creator><creator>Sung, Jidong</creator><creator>Jung, Hae Ok</creator><creator>Min, James K.</creator><creator>Chang, Hyuk-Jae</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202003</creationdate><title>Machine learning based risk prediction model for asymptomatic individuals who underwent coronary artery calcium score: Comparison with traditional risk prediction approaches</title><author>Han, Donghee ; Kolli, Kranthi K. ; Gransar, Heidi ; Lee, Ji Hyun ; Choi, Su-Yeon ; Chun, Eun Ju ; Han, Hae-Won ; Park, Sung Hak ; Sung, Jidong ; Jung, Hae Ok ; Min, James K. ; Chang, Hyuk-Jae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-7564e2bc2d6b7a85bb5262832d347687de59dec8a38e4af13fcb85bc539ddf0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Donghee</creatorcontrib><creatorcontrib>Kolli, Kranthi K.</creatorcontrib><creatorcontrib>Gransar, Heidi</creatorcontrib><creatorcontrib>Lee, Ji Hyun</creatorcontrib><creatorcontrib>Choi, Su-Yeon</creatorcontrib><creatorcontrib>Chun, Eun Ju</creatorcontrib><creatorcontrib>Han, Hae-Won</creatorcontrib><creatorcontrib>Park, Sung Hak</creatorcontrib><creatorcontrib>Sung, Jidong</creatorcontrib><creatorcontrib>Jung, Hae Ok</creatorcontrib><creatorcontrib>Min, James K.</creatorcontrib><creatorcontrib>Chang, Hyuk-Jae</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cardiovascular computed tomography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Donghee</au><au>Kolli, Kranthi K.</au><au>Gransar, Heidi</au><au>Lee, Ji Hyun</au><au>Choi, Su-Yeon</au><au>Chun, Eun Ju</au><au>Han, Hae-Won</au><au>Park, Sung Hak</au><au>Sung, Jidong</au><au>Jung, Hae Ok</au><au>Min, James K.</au><au>Chang, Hyuk-Jae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning based risk prediction model for asymptomatic individuals who underwent coronary artery calcium score: Comparison with traditional risk prediction approaches</atitle><jtitle>Journal of cardiovascular computed tomography</jtitle><addtitle>J Cardiovasc Comput Tomogr</addtitle><date>2020-03</date><risdate>2020</risdate><volume>14</volume><issue>2</issue><spage>168</spage><epage>176</epage><pages>168-176</pages><issn>1934-5925</issn><eissn>1876-861X</eissn><abstract>Machine learning (ML) is a computer algorithm used to identify patterns for prediction in various tasks, and ML methods have been beneficial for developing prediction models when applied to heterogeneous and large datasets. We aim to examine the prognostic ability of a ML-based prediction algorithm utilizing routine health checkup data to predict all-cause mortality (ACM) compared to established risk prediction approaches. A total 86155 patients with seventy available parameters (35 clinical, 32 laboratory, and 3 coronary artery calcium score [CACS] parameters) were analyzed. ML involved feature selection, splitting data randomly into a training (70%) and test set (30%), and model building with a boosted ensemble algorithm. The developed ML model was validated in a separate cohort of 4915 patients. The performance of ML for predicting ACM was compared with the following models: (i) the Framingham risk score (FRS) + CACS, (ii) atherosclerotic cardiovascular disease (ASCVD) + CACS, with (iii) logistic regression (LR) model. In the derivation dataset, 690 patients died during the median 4.6-year follow-up (interquartile range, 3.0–6.6 years). The AUC value in the ML model was significantly higher than the other models in test set (ML: 0.82, FRS + CACS: 0.70, ASCVD + CACS: 0.74; LR model: 0.79, p &lt; 0.05 for all), but not statistically significantly higher in validation set (ML: 0.78, FRS + CACS: 0.62, ASCVD + CACS: 0.72; LR model: 0.74, p: 0.572 and 0.625 for ASCVD + CACS and LR model, respectively). The ML model improved reclassification over the other models in low to intermediate risk patients (p &lt; 0.001 for all). The prediction algorithm derived by ML methods showed a robust ability to predict ACM and improved reclassification over established conventional risk prediction approaches in asymptomatic population undergoing a health checkup.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31570323</pmid><doi>10.1016/j.jcct.2019.09.005</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1934-5925
ispartof Journal of cardiovascular computed tomography, 2020-03, Vol.14 (2), p.168-176
issn 1934-5925
1876-861X
language eng
recordid cdi_proquest_miscellaneous_2299768488
source ScienceDirect Freedom Collection
title Machine learning based risk prediction model for asymptomatic individuals who underwent coronary artery calcium score: Comparison with traditional risk prediction approaches
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A20%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20based%20risk%20prediction%20model%20for%20asymptomatic%20individuals%20who%20underwent%20coronary%20artery%20calcium%20score:%20Comparison%20with%20traditional%20risk%20prediction%20approaches&rft.jtitle=Journal%20of%20cardiovascular%20computed%20tomography&rft.au=Han,%20Donghee&rft.date=2020-03&rft.volume=14&rft.issue=2&rft.spage=168&rft.epage=176&rft.pages=168-176&rft.issn=1934-5925&rft.eissn=1876-861X&rft_id=info:doi/10.1016/j.jcct.2019.09.005&rft_dat=%3Cproquest_cross%3E2299768488%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-7564e2bc2d6b7a85bb5262832d347687de59dec8a38e4af13fcb85bc539ddf0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2299768488&rft_id=info:pmid/31570323&rfr_iscdi=true