Loading…
Response biases: the influence of the contralateral limb and head position
Two experiments were designed to determine response biases resulting from production of force in the contralateral limb and head position. Participants were required to react with one limb while tracking a sinewave template by generating a pattern of force defined by the sinewave with the contralate...
Saved in:
Published in: | Experimental brain research 2019-12, Vol.237 (12), p.3253-3264 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two experiments were designed to determine response biases resulting from production of force in the contralateral limb and head position. Participants were required to react with one limb while tracking a sinewave template by generating a pattern of force defined by the sinewave with the contralateral limb or watching a cursor move through the sinewave. In Experiment 1, participants had to react with their right or left limb while their head was in a neutral position. In Experiment 2, participants had to react with their left limb while their head was turned 60° to the left or right. A color change of the waveform signaled participants to produce an isometric contraction with the reacting limb. Reaction time was calculated as the time interval between the color change of the waveform and the initiation of the response. The results indicated mean reaction time for the left limb was significantly influenced by force production in the right limb. During left limb reactions, reaction time was faster for trials in which both limbs initiated force simultaneously as compared to trials in which the left limb initiated force while the right limb was producing force. Mean reaction time for the right limb was not influenced by force production in the contralateral limb. The results are consistent with the notion that crosstalk can influence the time required to react to stimuli but this influence occurs at the point of force initiation and is asymmetric in nature with the dominant limb exerting a stronger influence on the non-dominant limb than vice versa. However, we did not find a similar effect for head position via the tonic neck response. |
---|---|
ISSN: | 0014-4819 1432-1106 |
DOI: | 10.1007/s00221-019-05667-z |