Loading…
Efficient Biosynthesis of (2S)‑Naringenin from p‑Coumaric Acid in Saccharomyces cerevisiae
(2S)-Naringenin, a (2S)-flavanone, is widely used in the food, chemical, and pharmaceutical industries because of its diverse physiological activities. The production of (2S)-naringenin in microorganisms provides an ideal source that reduces the cost of the flavonoid. To achieve efficient production...
Saved in:
Published in: | Journal of agricultural and food chemistry 2020-01, Vol.68 (4), p.1015-1021 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | (2S)-Naringenin, a (2S)-flavanone, is widely used in the food, chemical, and pharmaceutical industries because of its diverse physiological activities. The production of (2S)-naringenin in microorganisms provides an ideal source that reduces the cost of the flavonoid. To achieve efficient production of (2S)-naringenin in Saccharomyces cerevisiae (S. cerevisiae), we constructed a biosynthetic pathway from p-coumaric acid, a cost-effective and more efficient precursor. The (2S)-naringenin synthesis pathway genes were integrated into the yeast genome to obtain a (2S)-naringenin production strain. After gene dosage experiments, the genes negatively regulating the shikimate pathway and inefficient chalcone synthase activity were verified as factors limiting (2S)-naringenin biosynthesis. With fed-batch process optimization of the engineered strain, the titer of (2S)-naringenin reached 648.63 mg/L from 2.5 g/L p-coumaric acid. Our results indicate that the constitutive production of (2S)-naringenin from p-coumaric acid in S. cerevisiae is highly promising. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/acs.jafc.9b05218 |