Loading…

Properties of the Geometry of Solutions and Capacity of Multilayer Neural Networks with Rectified Linear Unit Activations

Rectified linear units (ReLUs) have become the main model for the neural units in current deep learning systems. This choice was originally suggested as a way to compensate for the so-called vanishing gradient problem which can undercut stochastic gradient descent learning in networks composed of mu...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2019-10, Vol.123 (17), p.1-170602, Article 170602
Main Authors: Baldassi, Carlo, Malatesta, Enrico M., Zecchina, Riccardo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rectified linear units (ReLUs) have become the main model for the neural units in current deep learning systems. This choice was originally suggested as a way to compensate for the so-called vanishing gradient problem which can undercut stochastic gradient descent learning in networks composed of multiple layers. Here we provide analytical results on the effects of ReLUs on the capacity and on the geometrical landscape of the solution space in two-layer neural networks with either binary or real-valued weights. We study the problem of storing an extensive number of random patterns and find that, quite unexpectedly, the capacity of the network remains finite as the number of neurons in the hidden layer increases, at odds with the case of threshold units in which the capacity diverges. Possibly more important, a large deviation approach allows us to find that the geometrical landscape of the solution space has a peculiar structure: While the majority of solutions are close in distance but still isolated, there exist rare regions of solutions which are much more dense than the similar ones in the case of threshold units. These solutions are robust to perturbations of the weights and can tolerate large perturbations of the inputs. The analytical results are corroborated by numerical findings.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.123.170602