Loading…
Antibacterial and antibiofilm activity of bone marrow-derived human mesenchymal stem cells secretome against Vibrio cholerae
The ability of V. cholerae to survive and spread in the aquatic environment combined with the scarcity of effective antimicrobial agents, especially those effective against multidrug-resistant strains highlights the need for alternative non-antibiotic approaches for the treatment of V. cholerae infe...
Saved in:
Published in: | Microbial pathogenesis 2020-02, Vol.139, p.103867-103867, Article 103867 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The ability of V. cholerae to survive and spread in the aquatic environment combined with the scarcity of effective antimicrobial agents, especially those effective against multidrug-resistant strains highlights the need for alternative non-antibiotic approaches for the treatment of V. cholerae infections. The aim of this study was to specifically examine the potential direct effect of unstimulated MSC secretome on V. cholerae killing and biofilm formation as a representative of non-invasive enteric bacterial pathogen. The bmMSCs were characterized by the presence of CD44 and CD73 and the absence of CD45 and CD34 molecular markers. Moreover, self-regeneration and differentiation capacity of MSCs into adipocytes and osteogenic lineages was assessed by immunohistology (IHC) method. The antibacterial activity of unstimulated MSCs supernatant against V. cholerae in broth microdilution assay decreased the bacterial suspension from 108 CFU/ml to 107 CFU/ml and showed a significant antimicrobial activity in a dose-dependent manner at dilutions of 1:8 to 1:128 (P |
---|---|
ISSN: | 0882-4010 1096-1208 |
DOI: | 10.1016/j.micpath.2019.103867 |