Loading…

Hypertonicity-responsive ubiquitin ligase RNF183 promotes Na, K-ATPase lysosomal degradation through ubiquitination of its β1 subunit

We previously reported that RNF183, a member of the RING finger (RNF) protein family, is specifically expressed in the renal collecting duct and that RNF183 mRNA is induced by the activity of nuclear factor of activated T cells 5 (NFAT5), which regulates the transcription of essential proteins for a...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical and biophysical research communications 2020-01, Vol.521 (4), p.1030-1035
Main Authors: Okamoto, Takumi, Wu, Yan, Matsuhisa, Koji, Saito, Atsushi, Sakaue, Fumika, Imaizumi, Kazunori, Kaneko, Masayuki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We previously reported that RNF183, a member of the RING finger (RNF) protein family, is specifically expressed in the renal collecting duct and that RNF183 mRNA is induced by the activity of nuclear factor of activated T cells 5 (NFAT5), which regulates the transcription of essential proteins for adaptation to hypertonic conditions. The renal medulla is the only tissue that is continuously hypertonic; therefore, RNF183 possibly plays an important role in adaptation to continuous hypertonic conditions. However, the mechanism of how cells adapt to long-term hypertonicity via RNF183 remains unclear. In this study, the Na, K-ATPase α1 subunit was identified as a candidate substrate of RNF183 by the BirA proximity-biotinylation technique. The Na, K-ATPase α1 subunit acts as an ion transporter along with the Na, K-ATPase β1 subunit at the plasma membrane. We confirmed that RNF183 interacted with both α1 and β1 subunits; however, we found that RNF183 ubiquitinated only the β1 subunit, not the α1 subunit. Furthermore, RNF183 translocated both α1 and β1 subunits from the plasma membrane to lysosomes. In addition, the expression levels of α1 and β1 subunits in HEK293 cells stably expressing RNF183 were significantly decreased compared with mock control cells, and were restored by siRNA-mediated knockdown of RNF183. Moreover, in RNF183-expressing cells, chloroquine treatment increased the protein levels of the α1 and β1 subunits. Therefore, our results suggest that Na, K-ATPase α1 and β1 subunits are degraded in lysosomes by RNF183-mediated ubiquitination of β1 subunit. [Display omitted] •Na, K-ATPase α1 subunits were identified by BirA proximity-biotinylation technique.•RNF183 interacts with Na, K-ATPase α1 and β1 subunits and ubiquitinates the latter.•RNF183 transfers Na, K-ATPase from the plasma membrane to lysosomes.•It also promotes lysosomal degradation of Na, K-ATPase.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2019.11.001