Loading…
First-principles prediction of large thermoelectric efficiency in superionic Li2SnX3 (X = S, Se)
Thermoelectric materials create an electric potential when subjected to a temperature gradient and vice versa; hence they can be used to harvest waste heat into electricity and in thermal management applications. However, finding highly efficient thermoelectrics with high figures of merit, zT ≥ 1, i...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2020, Vol.22 (2), p.878-889 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Thermoelectric materials create an electric potential when subjected to a temperature gradient and vice versa; hence they can be used to harvest waste heat into electricity and in thermal management applications. However, finding highly efficient thermoelectrics with high figures of merit, zT ≥ 1, is very challenging because the combination of a high power factor and low thermal conductivity is rare in materials. Here, we use first-principles methods to analyze the thermoelectric properties of Li2SnX3 (X = S, and Se), a recently synthesized class of lithium fast-ion conductors presenting high thermal stability. In p-type Li2SnX3, we estimate highly flat electronic valence bands that produce high Seebeck coefficients exceeding 400 μV K−1 at 700 K. In n-type Li2SnX3, the electronic conduction bands are slightly dispersive; however, the accompanying electron–acoustic phonon scattering is weak, which induces high electrical conductivity. The combination of a high Seebeck coefficient and electrical conductivity gives rise to high power factors, reaching a maximum of ∼4.5 mW m−1 K−2 at 300 K in both n-type Li2SnS3 and Li2SnSe3. Likewise, the thermal conductivity in Li2SnX3 is low as compared to conventional thermoelectric materials, 1.35–4.65 W m−1 K−1 at room temperature. As a result, we estimate a maximum zT of 1.1 in n-type Li2SnS3 at 700 K and of 2.1 (1.1) in n-type Li2SnSe3 at the same temperature (300 K). Our findings of large zT in Li2SnX3 suggest that lithium fast-ion conductors, typically employed as electrolytes in solid-state batteries, hold exceptional promise as thermoelectric materials. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c9cp05939c |