Loading…

Targeted therapies in gynaecological cancers

The treatment of cancer has changed dramatically over the last decade, driven by increased understanding of the cancer genome, immune landscape, molecular alterations and aberrant pathways that drive cancer progression. Advances in molecular biology have led to the development of targeted agents, in...

Full description

Saved in:
Bibliographic Details
Published in:Histopathology 2020-01, Vol.76 (1), p.157-170
Main Authors: Crusz, Shanthini M, Miller, Rowan E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3539-9987e25228d8bf51acd5506b16bfebcaae48a4986f3cd3e096f63f1d3a7ba73d3
cites cdi_FETCH-LOGICAL-c3539-9987e25228d8bf51acd5506b16bfebcaae48a4986f3cd3e096f63f1d3a7ba73d3
container_end_page 170
container_issue 1
container_start_page 157
container_title Histopathology
container_volume 76
creator Crusz, Shanthini M
Miller, Rowan E
description The treatment of cancer has changed dramatically over the last decade, driven by increased understanding of the cancer genome, immune landscape, molecular alterations and aberrant pathways that drive cancer progression. Advances in molecular biology have led to the development of targeted agents, including monoclonal antibodies, small molecules and check‐point inhibitors. Unlike chemotherapy, which inhibits DNA replication and mitosis, these agents target cancer signalling pathways, stroma, immune microenvironment and vasculature in tumour tissues. In gynaecological cancer, drugs targeting defective DNA repair, such as PARP inhibitors, have been approved for advanced ovarian cancer, and drugs targeting angiogenesis have been used in the treatment of advanced or recurrent ovarian and cervical cancers. Immune check‐point inhibitors such as anti‐PD‐1/PD‐L1 antibodies have proved successful for mismatch repair‐deficient endometrial cancers and HPV‐targeted therapies are under development for HPV‐related malignancies. In this era of precision medicine, improved understanding of cancer biology and genomics needs to be utilised to develop predictive biomarkers for these targeted therapies to maximise patient benefit.
doi_str_mv 10.1111/his.14009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2328351918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2328351918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3539-9987e25228d8bf51acd5506b16bfebcaae48a4986f3cd3e096f63f1d3a7ba73d3</originalsourceid><addsrcrecordid>eNp10EFLwzAYxvEgipvTg19ABl4U7Jb0bdLkKEPdYODBeQ5p-nbr6NqZrMi-vZmdHgRzyeXHn5eHkGtGRyy88ar0I5ZQqk5In4HgUcy5OiV9ClRFlIm0Ry68X1PKUojjc9IDJhPBgfbJw8K4Je4wH-5W6My2RD8s6-FyXxu0TdUsS2uqoTW1RecvyVlhKo9Xx39A3p-fFpNpNH99mU0e55EFDipSSqYY8ziWucwKzozNOaciYyIrMLPGYCJNoqQowOaAVIlCQMFyMGlmUshhQO667tY1Hy36nd6U3mJVmRqb1usYYgmcKSYDvf1D103r6nDdQaUcAqRB3XfKusZ7h4XeunJj3F4zqg8T6jCh_p4w2Jtjsc02mP_Kn80CGHfgs6xw_39JT2dvXfILBQl5HQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327538350</pqid></control><display><type>article</type><title>Targeted therapies in gynaecological cancers</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Crusz, Shanthini M ; Miller, Rowan E</creator><creatorcontrib>Crusz, Shanthini M ; Miller, Rowan E</creatorcontrib><description>The treatment of cancer has changed dramatically over the last decade, driven by increased understanding of the cancer genome, immune landscape, molecular alterations and aberrant pathways that drive cancer progression. Advances in molecular biology have led to the development of targeted agents, including monoclonal antibodies, small molecules and check‐point inhibitors. Unlike chemotherapy, which inhibits DNA replication and mitosis, these agents target cancer signalling pathways, stroma, immune microenvironment and vasculature in tumour tissues. In gynaecological cancer, drugs targeting defective DNA repair, such as PARP inhibitors, have been approved for advanced ovarian cancer, and drugs targeting angiogenesis have been used in the treatment of advanced or recurrent ovarian and cervical cancers. Immune check‐point inhibitors such as anti‐PD‐1/PD‐L1 antibodies have proved successful for mismatch repair‐deficient endometrial cancers and HPV‐targeted therapies are under development for HPV‐related malignancies. In this era of precision medicine, improved understanding of cancer biology and genomics needs to be utilised to develop predictive biomarkers for these targeted therapies to maximise patient benefit.</description><identifier>ISSN: 0309-0167</identifier><identifier>EISSN: 1365-2559</identifier><identifier>DOI: 10.1111/his.14009</identifier><identifier>PMID: 31846530</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Angiogenesis ; anti‐angiogenesis ; Cancer therapies ; Cervical cancer ; Cervix ; Chemotherapy ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA repair ; Drug delivery ; Endometrium ; Genomics ; gynaecological cancers ; Gynecology ; HPV ; Human papillomavirus ; immune check‐point inhibitors ; Immunosuppressive agents ; Mismatch repair ; Mitosis ; Monoclonal antibodies ; Ovarian cancer ; PARP ; PD-L1 protein ; Poly(ADP-ribose) polymerase ; Precision medicine ; Signal transduction ; Stroma ; targeted therapy ; Tumors</subject><ispartof>Histopathology, 2020-01, Vol.76 (1), p.157-170</ispartof><rights>2019 John Wiley &amp; Sons Ltd</rights><rights>2019 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3539-9987e25228d8bf51acd5506b16bfebcaae48a4986f3cd3e096f63f1d3a7ba73d3</citedby><cites>FETCH-LOGICAL-c3539-9987e25228d8bf51acd5506b16bfebcaae48a4986f3cd3e096f63f1d3a7ba73d3</cites><orcidid>0000-0002-2400-1716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31846530$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crusz, Shanthini M</creatorcontrib><creatorcontrib>Miller, Rowan E</creatorcontrib><title>Targeted therapies in gynaecological cancers</title><title>Histopathology</title><addtitle>Histopathology</addtitle><description>The treatment of cancer has changed dramatically over the last decade, driven by increased understanding of the cancer genome, immune landscape, molecular alterations and aberrant pathways that drive cancer progression. Advances in molecular biology have led to the development of targeted agents, including monoclonal antibodies, small molecules and check‐point inhibitors. Unlike chemotherapy, which inhibits DNA replication and mitosis, these agents target cancer signalling pathways, stroma, immune microenvironment and vasculature in tumour tissues. In gynaecological cancer, drugs targeting defective DNA repair, such as PARP inhibitors, have been approved for advanced ovarian cancer, and drugs targeting angiogenesis have been used in the treatment of advanced or recurrent ovarian and cervical cancers. Immune check‐point inhibitors such as anti‐PD‐1/PD‐L1 antibodies have proved successful for mismatch repair‐deficient endometrial cancers and HPV‐targeted therapies are under development for HPV‐related malignancies. In this era of precision medicine, improved understanding of cancer biology and genomics needs to be utilised to develop predictive biomarkers for these targeted therapies to maximise patient benefit.</description><subject>Angiogenesis</subject><subject>anti‐angiogenesis</subject><subject>Cancer therapies</subject><subject>Cervical cancer</subject><subject>Cervix</subject><subject>Chemotherapy</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA repair</subject><subject>Drug delivery</subject><subject>Endometrium</subject><subject>Genomics</subject><subject>gynaecological cancers</subject><subject>Gynecology</subject><subject>HPV</subject><subject>Human papillomavirus</subject><subject>immune check‐point inhibitors</subject><subject>Immunosuppressive agents</subject><subject>Mismatch repair</subject><subject>Mitosis</subject><subject>Monoclonal antibodies</subject><subject>Ovarian cancer</subject><subject>PARP</subject><subject>PD-L1 protein</subject><subject>Poly(ADP-ribose) polymerase</subject><subject>Precision medicine</subject><subject>Signal transduction</subject><subject>Stroma</subject><subject>targeted therapy</subject><subject>Tumors</subject><issn>0309-0167</issn><issn>1365-2559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10EFLwzAYxvEgipvTg19ABl4U7Jb0bdLkKEPdYODBeQ5p-nbr6NqZrMi-vZmdHgRzyeXHn5eHkGtGRyy88ar0I5ZQqk5In4HgUcy5OiV9ClRFlIm0Ry68X1PKUojjc9IDJhPBgfbJw8K4Je4wH-5W6My2RD8s6-FyXxu0TdUsS2uqoTW1RecvyVlhKo9Xx39A3p-fFpNpNH99mU0e55EFDipSSqYY8ziWucwKzozNOaciYyIrMLPGYCJNoqQowOaAVIlCQMFyMGlmUshhQO667tY1Hy36nd6U3mJVmRqb1usYYgmcKSYDvf1D103r6nDdQaUcAqRB3XfKusZ7h4XeunJj3F4zqg8T6jCh_p4w2Jtjsc02mP_Kn80CGHfgs6xw_39JT2dvXfILBQl5HQ</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Crusz, Shanthini M</creator><creator>Miller, Rowan E</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2400-1716</orcidid></search><sort><creationdate>202001</creationdate><title>Targeted therapies in gynaecological cancers</title><author>Crusz, Shanthini M ; Miller, Rowan E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3539-9987e25228d8bf51acd5506b16bfebcaae48a4986f3cd3e096f63f1d3a7ba73d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angiogenesis</topic><topic>anti‐angiogenesis</topic><topic>Cancer therapies</topic><topic>Cervical cancer</topic><topic>Cervix</topic><topic>Chemotherapy</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA repair</topic><topic>Drug delivery</topic><topic>Endometrium</topic><topic>Genomics</topic><topic>gynaecological cancers</topic><topic>Gynecology</topic><topic>HPV</topic><topic>Human papillomavirus</topic><topic>immune check‐point inhibitors</topic><topic>Immunosuppressive agents</topic><topic>Mismatch repair</topic><topic>Mitosis</topic><topic>Monoclonal antibodies</topic><topic>Ovarian cancer</topic><topic>PARP</topic><topic>PD-L1 protein</topic><topic>Poly(ADP-ribose) polymerase</topic><topic>Precision medicine</topic><topic>Signal transduction</topic><topic>Stroma</topic><topic>targeted therapy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crusz, Shanthini M</creatorcontrib><creatorcontrib>Miller, Rowan E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Histopathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crusz, Shanthini M</au><au>Miller, Rowan E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeted therapies in gynaecological cancers</atitle><jtitle>Histopathology</jtitle><addtitle>Histopathology</addtitle><date>2020-01</date><risdate>2020</risdate><volume>76</volume><issue>1</issue><spage>157</spage><epage>170</epage><pages>157-170</pages><issn>0309-0167</issn><eissn>1365-2559</eissn><abstract>The treatment of cancer has changed dramatically over the last decade, driven by increased understanding of the cancer genome, immune landscape, molecular alterations and aberrant pathways that drive cancer progression. Advances in molecular biology have led to the development of targeted agents, including monoclonal antibodies, small molecules and check‐point inhibitors. Unlike chemotherapy, which inhibits DNA replication and mitosis, these agents target cancer signalling pathways, stroma, immune microenvironment and vasculature in tumour tissues. In gynaecological cancer, drugs targeting defective DNA repair, such as PARP inhibitors, have been approved for advanced ovarian cancer, and drugs targeting angiogenesis have been used in the treatment of advanced or recurrent ovarian and cervical cancers. Immune check‐point inhibitors such as anti‐PD‐1/PD‐L1 antibodies have proved successful for mismatch repair‐deficient endometrial cancers and HPV‐targeted therapies are under development for HPV‐related malignancies. In this era of precision medicine, improved understanding of cancer biology and genomics needs to be utilised to develop predictive biomarkers for these targeted therapies to maximise patient benefit.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31846530</pmid><doi>10.1111/his.14009</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2400-1716</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0309-0167
ispartof Histopathology, 2020-01, Vol.76 (1), p.157-170
issn 0309-0167
1365-2559
language eng
recordid cdi_proquest_miscellaneous_2328351918
source Wiley-Blackwell Read & Publish Collection
subjects Angiogenesis
anti‐angiogenesis
Cancer therapies
Cervical cancer
Cervix
Chemotherapy
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA repair
Drug delivery
Endometrium
Genomics
gynaecological cancers
Gynecology
HPV
Human papillomavirus
immune check‐point inhibitors
Immunosuppressive agents
Mismatch repair
Mitosis
Monoclonal antibodies
Ovarian cancer
PARP
PD-L1 protein
Poly(ADP-ribose) polymerase
Precision medicine
Signal transduction
Stroma
targeted therapy
Tumors
title Targeted therapies in gynaecological cancers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeted%20therapies%20in%20gynaecological%20cancers&rft.jtitle=Histopathology&rft.au=Crusz,%20Shanthini%20M&rft.date=2020-01&rft.volume=76&rft.issue=1&rft.spage=157&rft.epage=170&rft.pages=157-170&rft.issn=0309-0167&rft.eissn=1365-2559&rft_id=info:doi/10.1111/his.14009&rft_dat=%3Cproquest_cross%3E2328351918%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3539-9987e25228d8bf51acd5506b16bfebcaae48a4986f3cd3e096f63f1d3a7ba73d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2327538350&rft_id=info:pmid/31846530&rfr_iscdi=true