Loading…
Targeted therapies in gynaecological cancers
The treatment of cancer has changed dramatically over the last decade, driven by increased understanding of the cancer genome, immune landscape, molecular alterations and aberrant pathways that drive cancer progression. Advances in molecular biology have led to the development of targeted agents, in...
Saved in:
Published in: | Histopathology 2020-01, Vol.76 (1), p.157-170 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3539-9987e25228d8bf51acd5506b16bfebcaae48a4986f3cd3e096f63f1d3a7ba73d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3539-9987e25228d8bf51acd5506b16bfebcaae48a4986f3cd3e096f63f1d3a7ba73d3 |
container_end_page | 170 |
container_issue | 1 |
container_start_page | 157 |
container_title | Histopathology |
container_volume | 76 |
creator | Crusz, Shanthini M Miller, Rowan E |
description | The treatment of cancer has changed dramatically over the last decade, driven by increased understanding of the cancer genome, immune landscape, molecular alterations and aberrant pathways that drive cancer progression. Advances in molecular biology have led to the development of targeted agents, including monoclonal antibodies, small molecules and check‐point inhibitors. Unlike chemotherapy, which inhibits DNA replication and mitosis, these agents target cancer signalling pathways, stroma, immune microenvironment and vasculature in tumour tissues. In gynaecological cancer, drugs targeting defective DNA repair, such as PARP inhibitors, have been approved for advanced ovarian cancer, and drugs targeting angiogenesis have been used in the treatment of advanced or recurrent ovarian and cervical cancers. Immune check‐point inhibitors such as anti‐PD‐1/PD‐L1 antibodies have proved successful for mismatch repair‐deficient endometrial cancers and HPV‐targeted therapies are under development for HPV‐related malignancies. In this era of precision medicine, improved understanding of cancer biology and genomics needs to be utilised to develop predictive biomarkers for these targeted therapies to maximise patient benefit. |
doi_str_mv | 10.1111/his.14009 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2328351918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2328351918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3539-9987e25228d8bf51acd5506b16bfebcaae48a4986f3cd3e096f63f1d3a7ba73d3</originalsourceid><addsrcrecordid>eNp10EFLwzAYxvEgipvTg19ABl4U7Jb0bdLkKEPdYODBeQ5p-nbr6NqZrMi-vZmdHgRzyeXHn5eHkGtGRyy88ar0I5ZQqk5In4HgUcy5OiV9ClRFlIm0Ry68X1PKUojjc9IDJhPBgfbJw8K4Je4wH-5W6My2RD8s6-FyXxu0TdUsS2uqoTW1RecvyVlhKo9Xx39A3p-fFpNpNH99mU0e55EFDipSSqYY8ziWucwKzozNOaciYyIrMLPGYCJNoqQowOaAVIlCQMFyMGlmUshhQO667tY1Hy36nd6U3mJVmRqb1usYYgmcKSYDvf1D103r6nDdQaUcAqRB3XfKusZ7h4XeunJj3F4zqg8T6jCh_p4w2Jtjsc02mP_Kn80CGHfgs6xw_39JT2dvXfILBQl5HQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327538350</pqid></control><display><type>article</type><title>Targeted therapies in gynaecological cancers</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Crusz, Shanthini M ; Miller, Rowan E</creator><creatorcontrib>Crusz, Shanthini M ; Miller, Rowan E</creatorcontrib><description>The treatment of cancer has changed dramatically over the last decade, driven by increased understanding of the cancer genome, immune landscape, molecular alterations and aberrant pathways that drive cancer progression. Advances in molecular biology have led to the development of targeted agents, including monoclonal antibodies, small molecules and check‐point inhibitors. Unlike chemotherapy, which inhibits DNA replication and mitosis, these agents target cancer signalling pathways, stroma, immune microenvironment and vasculature in tumour tissues. In gynaecological cancer, drugs targeting defective DNA repair, such as PARP inhibitors, have been approved for advanced ovarian cancer, and drugs targeting angiogenesis have been used in the treatment of advanced or recurrent ovarian and cervical cancers. Immune check‐point inhibitors such as anti‐PD‐1/PD‐L1 antibodies have proved successful for mismatch repair‐deficient endometrial cancers and HPV‐targeted therapies are under development for HPV‐related malignancies. In this era of precision medicine, improved understanding of cancer biology and genomics needs to be utilised to develop predictive biomarkers for these targeted therapies to maximise patient benefit.</description><identifier>ISSN: 0309-0167</identifier><identifier>EISSN: 1365-2559</identifier><identifier>DOI: 10.1111/his.14009</identifier><identifier>PMID: 31846530</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Angiogenesis ; anti‐angiogenesis ; Cancer therapies ; Cervical cancer ; Cervix ; Chemotherapy ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA repair ; Drug delivery ; Endometrium ; Genomics ; gynaecological cancers ; Gynecology ; HPV ; Human papillomavirus ; immune check‐point inhibitors ; Immunosuppressive agents ; Mismatch repair ; Mitosis ; Monoclonal antibodies ; Ovarian cancer ; PARP ; PD-L1 protein ; Poly(ADP-ribose) polymerase ; Precision medicine ; Signal transduction ; Stroma ; targeted therapy ; Tumors</subject><ispartof>Histopathology, 2020-01, Vol.76 (1), p.157-170</ispartof><rights>2019 John Wiley & Sons Ltd</rights><rights>2019 John Wiley & Sons Ltd.</rights><rights>Copyright © 2020 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3539-9987e25228d8bf51acd5506b16bfebcaae48a4986f3cd3e096f63f1d3a7ba73d3</citedby><cites>FETCH-LOGICAL-c3539-9987e25228d8bf51acd5506b16bfebcaae48a4986f3cd3e096f63f1d3a7ba73d3</cites><orcidid>0000-0002-2400-1716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31846530$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crusz, Shanthini M</creatorcontrib><creatorcontrib>Miller, Rowan E</creatorcontrib><title>Targeted therapies in gynaecological cancers</title><title>Histopathology</title><addtitle>Histopathology</addtitle><description>The treatment of cancer has changed dramatically over the last decade, driven by increased understanding of the cancer genome, immune landscape, molecular alterations and aberrant pathways that drive cancer progression. Advances in molecular biology have led to the development of targeted agents, including monoclonal antibodies, small molecules and check‐point inhibitors. Unlike chemotherapy, which inhibits DNA replication and mitosis, these agents target cancer signalling pathways, stroma, immune microenvironment and vasculature in tumour tissues. In gynaecological cancer, drugs targeting defective DNA repair, such as PARP inhibitors, have been approved for advanced ovarian cancer, and drugs targeting angiogenesis have been used in the treatment of advanced or recurrent ovarian and cervical cancers. Immune check‐point inhibitors such as anti‐PD‐1/PD‐L1 antibodies have proved successful for mismatch repair‐deficient endometrial cancers and HPV‐targeted therapies are under development for HPV‐related malignancies. In this era of precision medicine, improved understanding of cancer biology and genomics needs to be utilised to develop predictive biomarkers for these targeted therapies to maximise patient benefit.</description><subject>Angiogenesis</subject><subject>anti‐angiogenesis</subject><subject>Cancer therapies</subject><subject>Cervical cancer</subject><subject>Cervix</subject><subject>Chemotherapy</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA repair</subject><subject>Drug delivery</subject><subject>Endometrium</subject><subject>Genomics</subject><subject>gynaecological cancers</subject><subject>Gynecology</subject><subject>HPV</subject><subject>Human papillomavirus</subject><subject>immune check‐point inhibitors</subject><subject>Immunosuppressive agents</subject><subject>Mismatch repair</subject><subject>Mitosis</subject><subject>Monoclonal antibodies</subject><subject>Ovarian cancer</subject><subject>PARP</subject><subject>PD-L1 protein</subject><subject>Poly(ADP-ribose) polymerase</subject><subject>Precision medicine</subject><subject>Signal transduction</subject><subject>Stroma</subject><subject>targeted therapy</subject><subject>Tumors</subject><issn>0309-0167</issn><issn>1365-2559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10EFLwzAYxvEgipvTg19ABl4U7Jb0bdLkKEPdYODBeQ5p-nbr6NqZrMi-vZmdHgRzyeXHn5eHkGtGRyy88ar0I5ZQqk5In4HgUcy5OiV9ClRFlIm0Ry68X1PKUojjc9IDJhPBgfbJw8K4Je4wH-5W6My2RD8s6-FyXxu0TdUsS2uqoTW1RecvyVlhKo9Xx39A3p-fFpNpNH99mU0e55EFDipSSqYY8ziWucwKzozNOaciYyIrMLPGYCJNoqQowOaAVIlCQMFyMGlmUshhQO667tY1Hy36nd6U3mJVmRqb1usYYgmcKSYDvf1D103r6nDdQaUcAqRB3XfKusZ7h4XeunJj3F4zqg8T6jCh_p4w2Jtjsc02mP_Kn80CGHfgs6xw_39JT2dvXfILBQl5HQ</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Crusz, Shanthini M</creator><creator>Miller, Rowan E</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2400-1716</orcidid></search><sort><creationdate>202001</creationdate><title>Targeted therapies in gynaecological cancers</title><author>Crusz, Shanthini M ; Miller, Rowan E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3539-9987e25228d8bf51acd5506b16bfebcaae48a4986f3cd3e096f63f1d3a7ba73d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angiogenesis</topic><topic>anti‐angiogenesis</topic><topic>Cancer therapies</topic><topic>Cervical cancer</topic><topic>Cervix</topic><topic>Chemotherapy</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA repair</topic><topic>Drug delivery</topic><topic>Endometrium</topic><topic>Genomics</topic><topic>gynaecological cancers</topic><topic>Gynecology</topic><topic>HPV</topic><topic>Human papillomavirus</topic><topic>immune check‐point inhibitors</topic><topic>Immunosuppressive agents</topic><topic>Mismatch repair</topic><topic>Mitosis</topic><topic>Monoclonal antibodies</topic><topic>Ovarian cancer</topic><topic>PARP</topic><topic>PD-L1 protein</topic><topic>Poly(ADP-ribose) polymerase</topic><topic>Precision medicine</topic><topic>Signal transduction</topic><topic>Stroma</topic><topic>targeted therapy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crusz, Shanthini M</creatorcontrib><creatorcontrib>Miller, Rowan E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Histopathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crusz, Shanthini M</au><au>Miller, Rowan E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeted therapies in gynaecological cancers</atitle><jtitle>Histopathology</jtitle><addtitle>Histopathology</addtitle><date>2020-01</date><risdate>2020</risdate><volume>76</volume><issue>1</issue><spage>157</spage><epage>170</epage><pages>157-170</pages><issn>0309-0167</issn><eissn>1365-2559</eissn><abstract>The treatment of cancer has changed dramatically over the last decade, driven by increased understanding of the cancer genome, immune landscape, molecular alterations and aberrant pathways that drive cancer progression. Advances in molecular biology have led to the development of targeted agents, including monoclonal antibodies, small molecules and check‐point inhibitors. Unlike chemotherapy, which inhibits DNA replication and mitosis, these agents target cancer signalling pathways, stroma, immune microenvironment and vasculature in tumour tissues. In gynaecological cancer, drugs targeting defective DNA repair, such as PARP inhibitors, have been approved for advanced ovarian cancer, and drugs targeting angiogenesis have been used in the treatment of advanced or recurrent ovarian and cervical cancers. Immune check‐point inhibitors such as anti‐PD‐1/PD‐L1 antibodies have proved successful for mismatch repair‐deficient endometrial cancers and HPV‐targeted therapies are under development for HPV‐related malignancies. In this era of precision medicine, improved understanding of cancer biology and genomics needs to be utilised to develop predictive biomarkers for these targeted therapies to maximise patient benefit.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31846530</pmid><doi>10.1111/his.14009</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2400-1716</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0309-0167 |
ispartof | Histopathology, 2020-01, Vol.76 (1), p.157-170 |
issn | 0309-0167 1365-2559 |
language | eng |
recordid | cdi_proquest_miscellaneous_2328351918 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Angiogenesis anti‐angiogenesis Cancer therapies Cervical cancer Cervix Chemotherapy Deoxyribonucleic acid DNA DNA biosynthesis DNA repair Drug delivery Endometrium Genomics gynaecological cancers Gynecology HPV Human papillomavirus immune check‐point inhibitors Immunosuppressive agents Mismatch repair Mitosis Monoclonal antibodies Ovarian cancer PARP PD-L1 protein Poly(ADP-ribose) polymerase Precision medicine Signal transduction Stroma targeted therapy Tumors |
title | Targeted therapies in gynaecological cancers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeted%20therapies%20in%20gynaecological%20cancers&rft.jtitle=Histopathology&rft.au=Crusz,%20Shanthini%20M&rft.date=2020-01&rft.volume=76&rft.issue=1&rft.spage=157&rft.epage=170&rft.pages=157-170&rft.issn=0309-0167&rft.eissn=1365-2559&rft_id=info:doi/10.1111/his.14009&rft_dat=%3Cproquest_cross%3E2328351918%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3539-9987e25228d8bf51acd5506b16bfebcaae48a4986f3cd3e096f63f1d3a7ba73d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2327538350&rft_id=info:pmid/31846530&rfr_iscdi=true |