Loading…

Formulation development of lipid nanoparticles: Improved lipid screening and development of tacrolimus loaded nanostructured lipid carriers (NLC)

[Display omitted] Lipid nanoparticles are well-known nanocarriers for improved drug delivery. Their formulation development typically involves three formulations steps. In the first part a suitable lipid mixture which enables a high loading capacity and high encapsulation efficacy of the active need...

Full description

Saved in:
Bibliographic Details
Published in:International journal of pharmaceutics 2020-02, Vol.576, p.118918-118918, Article 118918
Main Authors: Kovačević, Anđelka B., Müller, Rainer H., Keck, Cornelia M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Lipid nanoparticles are well-known nanocarriers for improved drug delivery. Their formulation development typically involves three formulations steps. In the first part a suitable lipid mixture which enables a high loading capacity and high encapsulation efficacy of the active needs to be identified (lipid screening). In the second step suitable stabilizers that enable the production of small-sized lipid nanoparticles with narrow size distribution and sufficient physical stability need to be identified (stabilizer screening, optimization of production parameters) and in the third step the biopharmaceutical efficacy needs to be evaluated. Based on the results obtained the formulations will require further optimization. The classical formulation development of lipid nanoparticles and especially the classical lipid screening is tedious. Therefore, in this study, a novel approach for the lipid screening that was based on the determination of the Hansen solubility parameters was evaluated and the results obtained were compared to the results from the classical model. Tacrolimus was used as a model drug. Results showed that both lipid screenings led to similar results, indicating that the new approach can be used for future developments. The optimized formulation was composed of a lipid matrix system that contained waxes, triglycerides and monoacylglycerols with various carbon chain lengths (C8, C10, C16, C18) and enabled an encapsulation efficiency of ~99%. The stabilizer screening showed that surfactants with high HLB values, lower molecular weight, and shorter alkyl chain length tended to form smaller particles with narrower size distribution and better physical stability. The most suitable surfactant was found to be a caprylyl/capryl glucoside (Plantacare® 810), a PEG-free stabilizer, that is extremely mild for atopic skin. It led to particle sizes of about 200 nm and a zeta potential well above |30| mV. The optimized formulation contained 0.1% tacrolimus and possessed good physical stability. In conclusion, an optimized method for the selection of lipids that results in a limited number of experiments could be established and tacrolimus loaded lipid nanoparticles with similar drug load as a marketed formulation was successfully developed in this study.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2019.118918