Loading…
Cold-atom clock based on a diffractive optic
Clocks based on cold atoms offer unbeatable accuracy and long-term stability, but their use in portable quantum technologies is hampered by a large physical footprint. Here, we use the compact optical layout of a grating magneto-optical trap (gMOT) for a precise frequency reference. The gMOT collect...
Saved in:
Published in: | Optics express 2019-12, Vol.27 (26), p.38359-38366 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Clocks based on cold atoms offer unbeatable accuracy and long-term stability, but their use in portable quantum technologies is hampered by a large physical footprint. Here, we use the compact optical layout of a grating magneto-optical trap (gMOT) for a precise frequency reference. The gMOT collects 10
Rb atoms, which are subsequently cooled to 20 µK in optical molasses. We optically probe the microwave atomic ground-state splitting using lin⊥lin polarised coherent population trapping and a Raman-Ramsey sequence. With ballistic drop distances of only 0.5 mm, the measured short-term fractional frequency stability is 2×10
/
. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.378632 |