Loading…
Magnetic force fields of isolated small nanoparticle clusters
The usage of magnetic nanoparticles (NPs) in applications necessitates a precise mastering of their properties at the single nanoparticle level. There has been a lot of progress in the understanding of the magnetic properties of NPs, but incomparably less when interparticle interactions govern the o...
Saved in:
Published in: | Nanoscale 2020-01, Vol.12 (3), p.1842-1851 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The usage of magnetic nanoparticles (NPs) in applications necessitates a precise mastering of their properties at the single nanoparticle level. There has been a lot of progress in the understanding of the magnetic properties of NPs, but incomparably less when interparticle interactions govern the overall magnetic response. Here, we present a quantitative investigation of magnetic fields generated by small clusters of NPs assembled on a dielectric non-magnetic surface. Structures ranging from individual NPs to fifth-fold particulate clusters are investigated in their magnetization saturation state by magnetic force microscopy and numerical calculations. It is found that the magnetic stray field does not increase proportionally with the number of NPs in the cluster. Both measured and calculated magnetic force fields underline the great importance of the exact spatial arrangement of NPs, shedding light on the magnetic force field distribution of particulate clusters, which is relevant for the quantitative evaluation of their magnetization and perceptibly for many applications.
The usage of magnetic nanoparticles (NPs) in applications necessitates a precise mastering of their properties at the single nanoparticle level. |
---|---|
ISSN: | 2040-3364 2040-3372 2040-3372 |
DOI: | 10.1039/c9nr08634j |