Loading…
Synchronization of Hindmarsh Rose Neurons
Modeling and implementation of biological neurons are key to the fundamental understanding of neural network architectures in the brain and its cognitive behavior. Synchronization of neuronal models play a significant role in neural signal processing as it is very difficult to identify the actual in...
Saved in:
Published in: | Neural networks 2020-03, Vol.123, p.372-380 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Modeling and implementation of biological neurons are key to the fundamental understanding of neural network architectures in the brain and its cognitive behavior. Synchronization of neuronal models play a significant role in neural signal processing as it is very difficult to identify the actual interaction between neurons in living brain. Therefore, the synchronization study of these neuronal architectures has received extensive attention from researchers. Higher biological accuracy of these neuronal units demands more computational overhead and requires more hardware resources for implementation. This paper presents a two coupled hardware implementation of Hindmarsh Rose neuron model which is mathematically simpler model and yet mimics several behaviors of a real biological neuron. These neurons are synchronized using an exponential function. The coupled system shows several behaviors depending upon the parameters of HR model and coupling function. An approximation of coupling function is also provided to reduce the hardware cost. Both simulations and a low cost hardware implementations of exponential synaptic coupling function and its approximation are carried out for comparison. Hardware implementation on field programmable gate array (FPGA) of approximated coupling function shows that the coupled network produces different dynamical behaviors with acceptable error. Hardware implementation shows that the approximated coupling function has significantly lower implementation cost. A spiking neural network based on HR neuron is also shown as a practical application of this coupled HR neural networks. The spiking network successfully encodes and decodes a time varying input. |
---|---|
ISSN: | 0893-6080 1879-2782 |
DOI: | 10.1016/j.neunet.2019.11.024 |