Loading…
Bidirectional Molecule Generation with Recurrent Neural Networks
Recurrent neural networks (RNNs) are able to generate de novo molecular designs using simplified molecular input line entry systems (SMILES) string representations of the chemical structure. RNN-based structure generation is usually performed unidirectionally, by growing SMILES strings from left to...
Saved in:
Published in: | Journal of chemical information and modeling 2020-03, Vol.60 (3), p.1175-1183 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recurrent neural networks (RNNs) are able to generate de novo molecular designs using simplified molecular input line entry systems (SMILES) string representations of the chemical structure. RNN-based structure generation is usually performed unidirectionally, by growing SMILES strings from left to right. However, there is no natural start or end of a small molecule, and SMILES strings are intrinsically nonunivocal representations of molecular graphs. These properties motivate bidirectional structure generation. Here, bidirectional generative RNNs for SMILES-based molecule design are introduced. To this end, two established bidirectional methods were implemented, and a new method for SMILES string generation and data augmentation is introducedthe bidirectional molecule design by alternate learning (BIMODAL). These three bidirectional strategies were compared to the unidirectional forward RNN approach for SMILES string generation, in terms of the (i) novelty, (ii) scaffold diversity, and (iii) chemical–biological relevance of the computer-generated molecules. The results positively advocate bidirectional strategies for SMILES-based molecular de novo design, with BIMODAL showing superior results to the unidirectional forward RNN for most of the criteria in the tested conditions. The code of the methods and the pretrained models can be found at URL https://github.com/ETHmodlab/BIMODAL. |
---|---|
ISSN: | 1549-9596 1549-960X |
DOI: | 10.1021/acs.jcim.9b00943 |