Loading…
Draft Genome Sequence of Thermophilic Bacillus sp. TYF-LIM-B05 Directly Producing Ethanol from Various Carbon Sources Including Lignocellulose
Bacillus sp. TYF-LIM-B05, which is isolated from spoilage vinegar, is resistant to high temperature, high concentrated alcohol, acid, and salt, and can produce ethanol from mono-, di-, polysaccharide, and complex biomass as the sole carbon source. Thus, this strain is a potential candidate for conso...
Saved in:
Published in: | Current microbiology 2020-03, Vol.77 (3), p.491-499 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bacillus
sp. TYF-LIM-B05, which is isolated from spoilage vinegar, is resistant to high temperature, high concentrated alcohol, acid, and salt, and can produce ethanol from mono-, di-, polysaccharide, and complex biomass as the sole carbon source. Thus, this strain is a potential candidate for consolidated bioprocessing (CBP) of fermenting lignocellulose to ethanol in a single step. To provide insight into the key enzymes involved in lignocellulose degradation and ethanol production, a draft genome of TYF-LIM-B05 was developed in this study. The results indicated that 348 genes are related to carbohydrate transport and metabolism according to the clusters of orthologous groups of proteins and annotated 187 CAZy domains from a total of 61 different families. The presence of genes encoding laccases, quinone oxidoreductases/reductases, and aryl-alcohol dehydrogenases further implies that TYF-LIM-B05 has the potential to degrade lignin. Remarkably, this strain has the ability to catalyze the oxidative decarboxylation of pyruvate to acetyl-CoA by pyruvate dehydrogenase complexes. The genomic information provided in this study will help researchers to better understand the mechanisms of the lignocellulose degradation and ethanol production pathway in thermophiles. |
---|---|
ISSN: | 0343-8651 1432-0991 |
DOI: | 10.1007/s00284-019-01833-2 |