Loading…

Discretely programmable microwave photonic filter based on temporal Talbot effects

We propose and experimentally demonstrate a reconfigurable microwave photonic filter based on temporal Talbot effects. The microwave signal is first uniformly sampled by a train of optical pulses through electro-optic intensity modulation. The sampled optical pulses are then directed to a Talbot-bas...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2019-05, Vol.27 (10), p.14381-14391
Main Authors: Maram, Reza, Onori, Daniel, Azaña, José, Chen, Lawrence R
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose and experimentally demonstrate a reconfigurable microwave photonic filter based on temporal Talbot effects. The microwave signal is first uniformly sampled by a train of optical pulses through electro-optic intensity modulation. The sampled optical pulses are then directed to a Talbot-based optical signal processor, consisting of an electro-optic temporal phase modulator and a chromatic dispersion line. The Talbot-based microwave photonic filter (TMPF) exploits the inherent properties of the Talbot self-imaging effect for mitigating pulse-to-pulse intensity fluctuations of optical pulses to transmit some fluctuation frequencies and mitigate or entirely block other microwave spectral components. The output microwave signal is finally reconstructed from the processed optical pulses and the resultant RF response is measured by a network analyzer. The TMPF exhibits an RF response with periodic, symmetric-profile passbands whose center frequency and free spectral range (FSR) are defined by the sampling rate and the dispersion value. The filter passbands can be reconfigured electrically, in discrete steps, by adjusting the modulation function of the phase modulator, i.e., without the need for manual adjustment of the optical components. This enables the capability of selection of specific passbands among the primary passbands. The phase modulation function is provided using an arbitrary waveform generator, with the potential for fast tuning of the filter's spectral response. The bandwidth of the filter passband can also be easily customized by adjusting the sampling pulse's temporal width using an optical bandpass filter. Examples of filter performance in various passband configurations are also presented in the time domain to further validate the operation of the filter.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.27.014381