Loading…

Effects of tumor necrosis factor-like ligand 1A (TL1A) on imiquimod-induced psoriasiform skin inflammation in mice

TL1A, as a master regulatory cytokine, plays a key role in the development of diverse T-cell-mediated inflammatory and autoimmune diseases. Our study is to further understand the roles of TL1A in the pathogenic mechanism of psoriasis and to find a possible new therapeutic strategy in the treatment o...

Full description

Saved in:
Bibliographic Details
Published in:Archives of Dermatological Research 2020-09, Vol.312 (7), p.481-490
Main Authors: Li, Lin, Fu, Lixin, Zhou, Peimei, Lu, Yonghong, Zhang, Liwen, Wang, Wenju, Nie, Jianjun, Zhang, Dawei, Liu, Yan, Wu, Bo, Chen, Tao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:TL1A, as a master regulatory cytokine, plays a key role in the development of diverse T-cell-mediated inflammatory and autoimmune diseases. Our study is to further understand the roles of TL1A in the pathogenic mechanism of psoriasis and to find a possible new therapeutic strategy in the treatment of psoriasis. The direct effects of TL1A injection in mice skin and the therapeutic effects of TL1A blockade in imiquimod (IMQ)-induced psoriasis-like mouse model were researched in this study. First, we found that the expressions of TL1A in IMQ-treated lesions were significantly higher than Vaseline control group. And then, the results showed that TL1A injection exacerbated the psoriasiform phenotype on IMQ-treated skin (including clinical score, epidermal thickness changes, and Baker score) by increasing the number of T cells, neutrophils, and DCs, and upregulating the mRNA expression of IFN-γ and IL-17. However, anti-TL1A mAb can alleviate psoriasis-like lesions in clinical and effectively improved the histopathologic changes in IMQ-induced psoriasis-like mice after treatment. Moreover, anti-TL1A mAb also reduced the number of infiltrated CD3 + T cells, MPO +  neutrophils, and CD11c + DCs in psoriasis-like lesions, and obviously decreased the expression of IFN-γ and IL-17 in psoriasis-like lesions. Data suggested that TL1A might be involved in the pathogenesis of psoriasis, and targeting TL1A by anti-TL1A mAb might provide a solid foundation and novel therapeutic sight in the treatment of psoriasis.
ISSN:0340-3696
1432-069X
DOI:10.1007/s00403-019-02030-8