Loading…

Conserved and nuanced hierarchy of gene regulatory response to hypoxia

A dynamic assembly of nuclear and cytoplasmic processes regulate gene activity. Hypoxic stress and the associated energy crisis activate a plurality of regulatory mechanisms including modulation of chromatin structure, transcriptional activation and post-transcriptional processes. Temporal control o...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2021-01, Vol.229 (1), p.71-78
Main Authors: Lee, Travis A., Bailey-Serres, Julia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4767-ea7cdfe62737272d1bc888f3ff1d6bc194b619b71c3c201be2d5195149c85b683
cites cdi_FETCH-LOGICAL-c4767-ea7cdfe62737272d1bc888f3ff1d6bc194b619b71c3c201be2d5195149c85b683
container_end_page 78
container_issue 1
container_start_page 71
container_title The New phytologist
container_volume 229
creator Lee, Travis A.
Bailey-Serres, Julia
description A dynamic assembly of nuclear and cytoplasmic processes regulate gene activity. Hypoxic stress and the associated energy crisis activate a plurality of regulatory mechanisms including modulation of chromatin structure, transcriptional activation and post-transcriptional processes. Temporal control of genes is associated with specific chromatin modifications and transcription factors. Genome-scale technologies that resolve transcript subpopulations in the nucleus and cytoplasm indicate post-transcriptional processes enable cells to conserve energy, prepare for prolonged stress and accelerate recovery. Moreover, the harboring of gene transcripts associated with growth in the nucleus and macromolecular RNA–protein complexes contributes to the preferential translation of stress-responsive gene transcripts during hypoxia. We discuss evidence of evolutionary variation in integration of nuclear and cytoplasmic processes that may contribute to variations in flooding resilience.
doi_str_mv 10.1111/nph.16437
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2341620939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27149941</jstor_id><sourcerecordid>27149941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4767-ea7cdfe62737272d1bc888f3ff1d6bc194b619b71c3c201be2d5195149c85b683</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EglIY-ABQJBYYUvxsx45HVFFAQsAAEpvlOA5NlcbBboD8PYYCAxJe_IZzr947CB0AnkB8Z203nwBnVGygETAu0xyo2EQjjEmecsafdtBuCAuMscw42UY7FGRGZcZGaDZ1bbD-1ZaJbsuk7XVr4jyvrdfezIfEVcmzbW3i7XPf6JXzQxxD95lKVi6ZD517r_Ue2qp0E-z-9z9Gj7OLh-lVenN3eT09v0kNE1ykVgtTVpYTQQURpITC5Hle0aqCkhcGJCs4yEKAoYZgKCwps7gqMGnyrOA5HaOTdW_n3Utvw0ot62Bs0-jWuj4oQhlwgiWVET3-gy5c79u4nSKMi6iLAYnU6Zoy3oXgbaU6Xy-1HxRg9SlXRbnqS25kj74b-2Jpy1_yx2YEztbAW93Y4f8mdXt_9VN5uE4sQlT7myAiniwZ0A9QVIws</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467643412</pqid></control><display><type>article</type><title>Conserved and nuanced hierarchy of gene regulatory response to hypoxia</title><source>Wiley</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Lee, Travis A. ; Bailey-Serres, Julia</creator><creatorcontrib>Lee, Travis A. ; Bailey-Serres, Julia</creatorcontrib><description>A dynamic assembly of nuclear and cytoplasmic processes regulate gene activity. Hypoxic stress and the associated energy crisis activate a plurality of regulatory mechanisms including modulation of chromatin structure, transcriptional activation and post-transcriptional processes. Temporal control of genes is associated with specific chromatin modifications and transcription factors. Genome-scale technologies that resolve transcript subpopulations in the nucleus and cytoplasm indicate post-transcriptional processes enable cells to conserve energy, prepare for prolonged stress and accelerate recovery. Moreover, the harboring of gene transcripts associated with growth in the nucleus and macromolecular RNA–protein complexes contributes to the preferential translation of stress-responsive gene transcripts during hypoxia. We discuss evidence of evolutionary variation in integration of nuclear and cytoplasmic processes that may contribute to variations in flooding resilience.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.16437</identifier><identifier>PMID: 31953954</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Cell Nucleus - genetics ; Chromatin ; chromatin accessibility ; Cytoplasm ; Energy conservation ; ethylene responsive transcription factor ; Flooding ; Gene Expression Regulation ; Genes ; Genomes ; histone ; Hypoxia ; Hypoxia - genetics ; Macromolecules ; nuclear retention ; Nuclei (cytology) ; Nucleic acids ; Plants ; Regulatory mechanisms (biology) ; Ribonucleic acid ; RNA ; RNA polymerase II ; Stress ; Subpopulations ; Tansley insight ; Transcription ; Transcription activation ; Transcription Factors ; Transcription, Genetic ; Transcriptional Activation</subject><ispartof>The New phytologist, 2021-01, Vol.229 (1), p.71-78</ispartof><rights>2020 The Authors © 2020 New Phytologist Foundation</rights><rights>2020 The Authors New Phytologist © 2020 New Phytologist Foundation</rights><rights>2020 The Authors New Phytologist © 2020 New Phytologist Foundation.</rights><rights>Copyright © 2020 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4767-ea7cdfe62737272d1bc888f3ff1d6bc194b619b71c3c201be2d5195149c85b683</citedby><cites>FETCH-LOGICAL-c4767-ea7cdfe62737272d1bc888f3ff1d6bc194b619b71c3c201be2d5195149c85b683</cites><orcidid>0000-0002-8352-8956 ; 0000-0002-8568-7125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27149941$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27149941$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31953954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Travis A.</creatorcontrib><creatorcontrib>Bailey-Serres, Julia</creatorcontrib><title>Conserved and nuanced hierarchy of gene regulatory response to hypoxia</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>A dynamic assembly of nuclear and cytoplasmic processes regulate gene activity. Hypoxic stress and the associated energy crisis activate a plurality of regulatory mechanisms including modulation of chromatin structure, transcriptional activation and post-transcriptional processes. Temporal control of genes is associated with specific chromatin modifications and transcription factors. Genome-scale technologies that resolve transcript subpopulations in the nucleus and cytoplasm indicate post-transcriptional processes enable cells to conserve energy, prepare for prolonged stress and accelerate recovery. Moreover, the harboring of gene transcripts associated with growth in the nucleus and macromolecular RNA–protein complexes contributes to the preferential translation of stress-responsive gene transcripts during hypoxia. We discuss evidence of evolutionary variation in integration of nuclear and cytoplasmic processes that may contribute to variations in flooding resilience.</description><subject>Cell Nucleus - genetics</subject><subject>Chromatin</subject><subject>chromatin accessibility</subject><subject>Cytoplasm</subject><subject>Energy conservation</subject><subject>ethylene responsive transcription factor</subject><subject>Flooding</subject><subject>Gene Expression Regulation</subject><subject>Genes</subject><subject>Genomes</subject><subject>histone</subject><subject>Hypoxia</subject><subject>Hypoxia - genetics</subject><subject>Macromolecules</subject><subject>nuclear retention</subject><subject>Nuclei (cytology)</subject><subject>Nucleic acids</subject><subject>Plants</subject><subject>Regulatory mechanisms (biology)</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase II</subject><subject>Stress</subject><subject>Subpopulations</subject><subject>Tansley insight</subject><subject>Transcription</subject><subject>Transcription activation</subject><subject>Transcription Factors</subject><subject>Transcription, Genetic</subject><subject>Transcriptional Activation</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EglIY-ABQJBYYUvxsx45HVFFAQsAAEpvlOA5NlcbBboD8PYYCAxJe_IZzr947CB0AnkB8Z203nwBnVGygETAu0xyo2EQjjEmecsafdtBuCAuMscw42UY7FGRGZcZGaDZ1bbD-1ZaJbsuk7XVr4jyvrdfezIfEVcmzbW3i7XPf6JXzQxxD95lKVi6ZD517r_Ue2qp0E-z-9z9Gj7OLh-lVenN3eT09v0kNE1ykVgtTVpYTQQURpITC5Hle0aqCkhcGJCs4yEKAoYZgKCwps7gqMGnyrOA5HaOTdW_n3Utvw0ot62Bs0-jWuj4oQhlwgiWVET3-gy5c79u4nSKMi6iLAYnU6Zoy3oXgbaU6Xy-1HxRg9SlXRbnqS25kj74b-2Jpy1_yx2YEztbAW93Y4f8mdXt_9VN5uE4sQlT7myAiniwZ0A9QVIws</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Lee, Travis A.</creator><creator>Bailey-Serres, Julia</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8352-8956</orcidid><orcidid>https://orcid.org/0000-0002-8568-7125</orcidid></search><sort><creationdate>202101</creationdate><title>Conserved and nuanced hierarchy of gene regulatory response to hypoxia</title><author>Lee, Travis A. ; Bailey-Serres, Julia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4767-ea7cdfe62737272d1bc888f3ff1d6bc194b619b71c3c201be2d5195149c85b683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cell Nucleus - genetics</topic><topic>Chromatin</topic><topic>chromatin accessibility</topic><topic>Cytoplasm</topic><topic>Energy conservation</topic><topic>ethylene responsive transcription factor</topic><topic>Flooding</topic><topic>Gene Expression Regulation</topic><topic>Genes</topic><topic>Genomes</topic><topic>histone</topic><topic>Hypoxia</topic><topic>Hypoxia - genetics</topic><topic>Macromolecules</topic><topic>nuclear retention</topic><topic>Nuclei (cytology)</topic><topic>Nucleic acids</topic><topic>Plants</topic><topic>Regulatory mechanisms (biology)</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase II</topic><topic>Stress</topic><topic>Subpopulations</topic><topic>Tansley insight</topic><topic>Transcription</topic><topic>Transcription activation</topic><topic>Transcription Factors</topic><topic>Transcription, Genetic</topic><topic>Transcriptional Activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Travis A.</creatorcontrib><creatorcontrib>Bailey-Serres, Julia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Travis A.</au><au>Bailey-Serres, Julia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conserved and nuanced hierarchy of gene regulatory response to hypoxia</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2021-01</date><risdate>2021</risdate><volume>229</volume><issue>1</issue><spage>71</spage><epage>78</epage><pages>71-78</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>A dynamic assembly of nuclear and cytoplasmic processes regulate gene activity. Hypoxic stress and the associated energy crisis activate a plurality of regulatory mechanisms including modulation of chromatin structure, transcriptional activation and post-transcriptional processes. Temporal control of genes is associated with specific chromatin modifications and transcription factors. Genome-scale technologies that resolve transcript subpopulations in the nucleus and cytoplasm indicate post-transcriptional processes enable cells to conserve energy, prepare for prolonged stress and accelerate recovery. Moreover, the harboring of gene transcripts associated with growth in the nucleus and macromolecular RNA–protein complexes contributes to the preferential translation of stress-responsive gene transcripts during hypoxia. We discuss evidence of evolutionary variation in integration of nuclear and cytoplasmic processes that may contribute to variations in flooding resilience.</abstract><cop>England</cop><pub>Wiley</pub><pmid>31953954</pmid><doi>10.1111/nph.16437</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8352-8956</orcidid><orcidid>https://orcid.org/0000-0002-8568-7125</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2021-01, Vol.229 (1), p.71-78
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_2341620939
source Wiley; JSTOR Archival Journals and Primary Sources Collection
subjects Cell Nucleus - genetics
Chromatin
chromatin accessibility
Cytoplasm
Energy conservation
ethylene responsive transcription factor
Flooding
Gene Expression Regulation
Genes
Genomes
histone
Hypoxia
Hypoxia - genetics
Macromolecules
nuclear retention
Nuclei (cytology)
Nucleic acids
Plants
Regulatory mechanisms (biology)
Ribonucleic acid
RNA
RNA polymerase II
Stress
Subpopulations
Tansley insight
Transcription
Transcription activation
Transcription Factors
Transcription, Genetic
Transcriptional Activation
title Conserved and nuanced hierarchy of gene regulatory response to hypoxia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conserved%20and%20nuanced%20hierarchy%20of%20gene%20regulatory%20response%20to%20hypoxia&rft.jtitle=The%20New%20phytologist&rft.au=Lee,%20Travis%20A.&rft.date=2021-01&rft.volume=229&rft.issue=1&rft.spage=71&rft.epage=78&rft.pages=71-78&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.16437&rft_dat=%3Cjstor_proqu%3E27149941%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4767-ea7cdfe62737272d1bc888f3ff1d6bc194b619b71c3c201be2d5195149c85b683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2467643412&rft_id=info:pmid/31953954&rft_jstor_id=27149941&rfr_iscdi=true