Loading…
Conserved and nuanced hierarchy of gene regulatory response to hypoxia
A dynamic assembly of nuclear and cytoplasmic processes regulate gene activity. Hypoxic stress and the associated energy crisis activate a plurality of regulatory mechanisms including modulation of chromatin structure, transcriptional activation and post-transcriptional processes. Temporal control o...
Saved in:
Published in: | The New phytologist 2021-01, Vol.229 (1), p.71-78 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4767-ea7cdfe62737272d1bc888f3ff1d6bc194b619b71c3c201be2d5195149c85b683 |
---|---|
cites | cdi_FETCH-LOGICAL-c4767-ea7cdfe62737272d1bc888f3ff1d6bc194b619b71c3c201be2d5195149c85b683 |
container_end_page | 78 |
container_issue | 1 |
container_start_page | 71 |
container_title | The New phytologist |
container_volume | 229 |
creator | Lee, Travis A. Bailey-Serres, Julia |
description | A dynamic assembly of nuclear and cytoplasmic processes regulate gene activity. Hypoxic stress and the associated energy crisis activate a plurality of regulatory mechanisms including modulation of chromatin structure, transcriptional activation and post-transcriptional processes. Temporal control of genes is associated with specific chromatin modifications and transcription factors. Genome-scale technologies that resolve transcript subpopulations in the nucleus and cytoplasm indicate post-transcriptional processes enable cells to conserve energy, prepare for prolonged stress and accelerate recovery. Moreover, the harboring of gene transcripts associated with growth in the nucleus and macromolecular RNA–protein complexes contributes to the preferential translation of stress-responsive gene transcripts during hypoxia. We discuss evidence of evolutionary variation in integration of nuclear and cytoplasmic processes that may contribute to variations in flooding resilience. |
doi_str_mv | 10.1111/nph.16437 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2341620939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27149941</jstor_id><sourcerecordid>27149941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4767-ea7cdfe62737272d1bc888f3ff1d6bc194b619b71c3c201be2d5195149c85b683</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EglIY-ABQJBYYUvxsx45HVFFAQsAAEpvlOA5NlcbBboD8PYYCAxJe_IZzr947CB0AnkB8Z203nwBnVGygETAu0xyo2EQjjEmecsafdtBuCAuMscw42UY7FGRGZcZGaDZ1bbD-1ZaJbsuk7XVr4jyvrdfezIfEVcmzbW3i7XPf6JXzQxxD95lKVi6ZD517r_Ue2qp0E-z-9z9Gj7OLh-lVenN3eT09v0kNE1ykVgtTVpYTQQURpITC5Hle0aqCkhcGJCs4yEKAoYZgKCwps7gqMGnyrOA5HaOTdW_n3Utvw0ot62Bs0-jWuj4oQhlwgiWVET3-gy5c79u4nSKMi6iLAYnU6Zoy3oXgbaU6Xy-1HxRg9SlXRbnqS25kj74b-2Jpy1_yx2YEztbAW93Y4f8mdXt_9VN5uE4sQlT7myAiniwZ0A9QVIws</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467643412</pqid></control><display><type>article</type><title>Conserved and nuanced hierarchy of gene regulatory response to hypoxia</title><source>Wiley</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Lee, Travis A. ; Bailey-Serres, Julia</creator><creatorcontrib>Lee, Travis A. ; Bailey-Serres, Julia</creatorcontrib><description>A dynamic assembly of nuclear and cytoplasmic processes regulate gene activity. Hypoxic stress and the associated energy crisis activate a plurality of regulatory mechanisms including modulation of chromatin structure, transcriptional activation and post-transcriptional processes. Temporal control of genes is associated with specific chromatin modifications and transcription factors. Genome-scale technologies that resolve transcript subpopulations in the nucleus and cytoplasm indicate post-transcriptional processes enable cells to conserve energy, prepare for prolonged stress and accelerate recovery. Moreover, the harboring of gene transcripts associated with growth in the nucleus and macromolecular RNA–protein complexes contributes to the preferential translation of stress-responsive gene transcripts during hypoxia. We discuss evidence of evolutionary variation in integration of nuclear and cytoplasmic processes that may contribute to variations in flooding resilience.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.16437</identifier><identifier>PMID: 31953954</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Cell Nucleus - genetics ; Chromatin ; chromatin accessibility ; Cytoplasm ; Energy conservation ; ethylene responsive transcription factor ; Flooding ; Gene Expression Regulation ; Genes ; Genomes ; histone ; Hypoxia ; Hypoxia - genetics ; Macromolecules ; nuclear retention ; Nuclei (cytology) ; Nucleic acids ; Plants ; Regulatory mechanisms (biology) ; Ribonucleic acid ; RNA ; RNA polymerase II ; Stress ; Subpopulations ; Tansley insight ; Transcription ; Transcription activation ; Transcription Factors ; Transcription, Genetic ; Transcriptional Activation</subject><ispartof>The New phytologist, 2021-01, Vol.229 (1), p.71-78</ispartof><rights>2020 The Authors © 2020 New Phytologist Foundation</rights><rights>2020 The Authors New Phytologist © 2020 New Phytologist Foundation</rights><rights>2020 The Authors New Phytologist © 2020 New Phytologist Foundation.</rights><rights>Copyright © 2020 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4767-ea7cdfe62737272d1bc888f3ff1d6bc194b619b71c3c201be2d5195149c85b683</citedby><cites>FETCH-LOGICAL-c4767-ea7cdfe62737272d1bc888f3ff1d6bc194b619b71c3c201be2d5195149c85b683</cites><orcidid>0000-0002-8352-8956 ; 0000-0002-8568-7125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27149941$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27149941$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31953954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Travis A.</creatorcontrib><creatorcontrib>Bailey-Serres, Julia</creatorcontrib><title>Conserved and nuanced hierarchy of gene regulatory response to hypoxia</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>A dynamic assembly of nuclear and cytoplasmic processes regulate gene activity. Hypoxic stress and the associated energy crisis activate a plurality of regulatory mechanisms including modulation of chromatin structure, transcriptional activation and post-transcriptional processes. Temporal control of genes is associated with specific chromatin modifications and transcription factors. Genome-scale technologies that resolve transcript subpopulations in the nucleus and cytoplasm indicate post-transcriptional processes enable cells to conserve energy, prepare for prolonged stress and accelerate recovery. Moreover, the harboring of gene transcripts associated with growth in the nucleus and macromolecular RNA–protein complexes contributes to the preferential translation of stress-responsive gene transcripts during hypoxia. We discuss evidence of evolutionary variation in integration of nuclear and cytoplasmic processes that may contribute to variations in flooding resilience.</description><subject>Cell Nucleus - genetics</subject><subject>Chromatin</subject><subject>chromatin accessibility</subject><subject>Cytoplasm</subject><subject>Energy conservation</subject><subject>ethylene responsive transcription factor</subject><subject>Flooding</subject><subject>Gene Expression Regulation</subject><subject>Genes</subject><subject>Genomes</subject><subject>histone</subject><subject>Hypoxia</subject><subject>Hypoxia - genetics</subject><subject>Macromolecules</subject><subject>nuclear retention</subject><subject>Nuclei (cytology)</subject><subject>Nucleic acids</subject><subject>Plants</subject><subject>Regulatory mechanisms (biology)</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase II</subject><subject>Stress</subject><subject>Subpopulations</subject><subject>Tansley insight</subject><subject>Transcription</subject><subject>Transcription activation</subject><subject>Transcription Factors</subject><subject>Transcription, Genetic</subject><subject>Transcriptional Activation</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EglIY-ABQJBYYUvxsx45HVFFAQsAAEpvlOA5NlcbBboD8PYYCAxJe_IZzr947CB0AnkB8Z203nwBnVGygETAu0xyo2EQjjEmecsafdtBuCAuMscw42UY7FGRGZcZGaDZ1bbD-1ZaJbsuk7XVr4jyvrdfezIfEVcmzbW3i7XPf6JXzQxxD95lKVi6ZD517r_Ue2qp0E-z-9z9Gj7OLh-lVenN3eT09v0kNE1ykVgtTVpYTQQURpITC5Hle0aqCkhcGJCs4yEKAoYZgKCwps7gqMGnyrOA5HaOTdW_n3Utvw0ot62Bs0-jWuj4oQhlwgiWVET3-gy5c79u4nSKMi6iLAYnU6Zoy3oXgbaU6Xy-1HxRg9SlXRbnqS25kj74b-2Jpy1_yx2YEztbAW93Y4f8mdXt_9VN5uE4sQlT7myAiniwZ0A9QVIws</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Lee, Travis A.</creator><creator>Bailey-Serres, Julia</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8352-8956</orcidid><orcidid>https://orcid.org/0000-0002-8568-7125</orcidid></search><sort><creationdate>202101</creationdate><title>Conserved and nuanced hierarchy of gene regulatory response to hypoxia</title><author>Lee, Travis A. ; Bailey-Serres, Julia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4767-ea7cdfe62737272d1bc888f3ff1d6bc194b619b71c3c201be2d5195149c85b683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cell Nucleus - genetics</topic><topic>Chromatin</topic><topic>chromatin accessibility</topic><topic>Cytoplasm</topic><topic>Energy conservation</topic><topic>ethylene responsive transcription factor</topic><topic>Flooding</topic><topic>Gene Expression Regulation</topic><topic>Genes</topic><topic>Genomes</topic><topic>histone</topic><topic>Hypoxia</topic><topic>Hypoxia - genetics</topic><topic>Macromolecules</topic><topic>nuclear retention</topic><topic>Nuclei (cytology)</topic><topic>Nucleic acids</topic><topic>Plants</topic><topic>Regulatory mechanisms (biology)</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase II</topic><topic>Stress</topic><topic>Subpopulations</topic><topic>Tansley insight</topic><topic>Transcription</topic><topic>Transcription activation</topic><topic>Transcription Factors</topic><topic>Transcription, Genetic</topic><topic>Transcriptional Activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Travis A.</creatorcontrib><creatorcontrib>Bailey-Serres, Julia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Travis A.</au><au>Bailey-Serres, Julia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conserved and nuanced hierarchy of gene regulatory response to hypoxia</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2021-01</date><risdate>2021</risdate><volume>229</volume><issue>1</issue><spage>71</spage><epage>78</epage><pages>71-78</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>A dynamic assembly of nuclear and cytoplasmic processes regulate gene activity. Hypoxic stress and the associated energy crisis activate a plurality of regulatory mechanisms including modulation of chromatin structure, transcriptional activation and post-transcriptional processes. Temporal control of genes is associated with specific chromatin modifications and transcription factors. Genome-scale technologies that resolve transcript subpopulations in the nucleus and cytoplasm indicate post-transcriptional processes enable cells to conserve energy, prepare for prolonged stress and accelerate recovery. Moreover, the harboring of gene transcripts associated with growth in the nucleus and macromolecular RNA–protein complexes contributes to the preferential translation of stress-responsive gene transcripts during hypoxia. We discuss evidence of evolutionary variation in integration of nuclear and cytoplasmic processes that may contribute to variations in flooding resilience.</abstract><cop>England</cop><pub>Wiley</pub><pmid>31953954</pmid><doi>10.1111/nph.16437</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8352-8956</orcidid><orcidid>https://orcid.org/0000-0002-8568-7125</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2021-01, Vol.229 (1), p.71-78 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_2341620939 |
source | Wiley; JSTOR Archival Journals and Primary Sources Collection |
subjects | Cell Nucleus - genetics Chromatin chromatin accessibility Cytoplasm Energy conservation ethylene responsive transcription factor Flooding Gene Expression Regulation Genes Genomes histone Hypoxia Hypoxia - genetics Macromolecules nuclear retention Nuclei (cytology) Nucleic acids Plants Regulatory mechanisms (biology) Ribonucleic acid RNA RNA polymerase II Stress Subpopulations Tansley insight Transcription Transcription activation Transcription Factors Transcription, Genetic Transcriptional Activation |
title | Conserved and nuanced hierarchy of gene regulatory response to hypoxia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conserved%20and%20nuanced%20hierarchy%20of%20gene%20regulatory%20response%20to%20hypoxia&rft.jtitle=The%20New%20phytologist&rft.au=Lee,%20Travis%20A.&rft.date=2021-01&rft.volume=229&rft.issue=1&rft.spage=71&rft.epage=78&rft.pages=71-78&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.16437&rft_dat=%3Cjstor_proqu%3E27149941%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4767-ea7cdfe62737272d1bc888f3ff1d6bc194b619b71c3c201be2d5195149c85b683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2467643412&rft_id=info:pmid/31953954&rft_jstor_id=27149941&rfr_iscdi=true |