Loading…
Wearable Multimodal Stethoscope Patch for Wireless Biosignal Acquisition and Long-Term Auscultation
Detecting critical events in postoperative care and improving comfort, costs and availability in sleep assessment are two of many areas in which wearable biosignal acquisition can be a viable tool. Modern sensors as well as patch and textile integration facilitate unobtrusive biosignal acquisition,...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Detecting critical events in postoperative care and improving comfort, costs and availability in sleep assessment are two of many areas in which wearable biosignal acquisition can be a viable tool. Modern sensors as well as patch and textile integration facilitate unobtrusive biosignal acquisition, yet placing sensors at different locations across the body is still prevailing. Actigraphy and the electrocardiogram (ECG) are commonly integrated modalities. The stethoscope however, despite its wide range of applications, has been neglected from these developments. The introduction of digital stethoscopes, recently led to an objectification and increased interest in the field. We present the prototype of a wearable, Bluetooth 5.0 LE enabled multimodal sensor patch combining five modalities: MEMS stethoscope, ambient noise sensing, ECG, impedance pneumography (IP) and 9-axial actigraphy. The system alleviates the need for sensors at different body positions and enables long-term auscultation. Using high sampling rates and online synchronization, multimodal sensor fusion becomes feasible. The patch measures 70 mm x 60 mm and is attached using three 24 mm Ag/AgCl electrodes. High quality cardiac and pulmonary auscultation as well as ECG and IP acquisition are demonstrated. We derived respiration surrogates with linear correlations to a reference exceeding 0.91 and conclude that the system can be utilized in fields requiring unobtrusive yet high quality signal acquisition. Future research will include the integration of additional sensors and further size reduction. |
---|---|
ISSN: | 1558-4615 2694-0604 |
DOI: | 10.1109/EMBC.2019.8857210 |