Loading…

Oscillations and collective excitability in a model of stochastic neurons under excitatory and inhibitory coupling

We study a model with excitable neurons modeled as stochastic units with three states, representing quiescence, firing, and refractoriness. The transition rates between quiescence and firing depend exponentially on the number of firing neighbors, whereas all other rates are kept constant. This model...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E 2019-12, Vol.100 (6-1), p.062416-062416, Article 062416
Main Authors: Lima Dias Pinto, Italo'Ivo, Copelli, Mauro
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study a model with excitable neurons modeled as stochastic units with three states, representing quiescence, firing, and refractoriness. The transition rates between quiescence and firing depend exponentially on the number of firing neighbors, whereas all other rates are kept constant. This model class was shown to exhibit collective oscillations (synchronization) if neurons are spiking autonomously, but not if neurons are in the excitable regime. In both cases, neurons were restricted to interact through excitatory coupling. Here we show that a plethora of collective phenomena appear if inhibitory coupling is added. Besides the usual transition between an absorbing and an active phase, the model with excitatory and inhibitory neurons can also undergo reentrant transitions to an oscillatory phase. In the mean-field description, oscillations can emerge through supercritical or subcritical Hopf bifurcations, as well as through infinite period bifurcations. The model has bistability between active and oscillating behavior, as well as collective excitability, a regime where the system can display a peak of global activity when subject to a sufficiently strong perturbation. We employ a variant of the Shinomoto-Kuramoto order parameter to characterize the phase transitions and their system-size dependence.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.100.062416