Loading…

Novel approach for overcoming the stability challenges of lipid-based excipients. Part 2: Application of polyglycerol esters of fatty acids as hot melt coating excipients

[Display omitted] The application of hot melt coating (HMC) as an economic and solvent-free technology is restricted in pharmaceutical development, due to the instable solid-state of HMC excipients resulting in drug release instability. We have previously introduced polyglycerol esters of fatty acid...

Full description

Saved in:
Bibliographic Details
Published in:European journal of pharmaceutics and biopharmaceutics 2020-03, Vol.148, p.107-117
Main Authors: Salar-Behzadi, Sharareh, Corzo, Carolina, Gomes Lopes, Diogo, Meindl, Claudia, Lochmann, Dirk, Reyer, Sebastian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] The application of hot melt coating (HMC) as an economic and solvent-free technology is restricted in pharmaceutical development, due to the instable solid-state of HMC excipients resulting in drug release instability. We have previously introduced polyglycerol esters of fatty acids (PGFAs) with stable solid-state (Part 1). In this work we showed a novel application of PGFAs as HMC excipients with stable performance. Three PGFA compounds with a HLB range of 5.1–6.2 were selected for developing immediate-release formulations. The HMC properties were investigated. The viscosity of molten lipids at 100 °C was suitable for atomizing. The DSC data showed the absence of low solidification fractions, thus reduced risk of agglomeration during the coating process. The driving force for crystallization of selected compounds was lower and the heat flow exotherms were broader compared to conventional HMC formulations, indicating a lower energy barrier for nucleation and lower crystallization rate. Lower spray rates and a process temperature close to solidification temperature were desired to provide homogeneous coating. DSC and X-ray diffraction data revealed stable solid state during 6 months storage at 40 °C. API release was directly proportional to HLB and indirectly proportional to crystalline network density and was stable during investigated 3 months. Cytotoxicity was assessed by dehydrogenase activity and no in vitro cytotoxic effect was observed.
ISSN:0939-6411
1873-3441
DOI:10.1016/j.ejpb.2020.01.009