Loading…

Covalent on-surface polymerization

With the rapid development of scanning probe microscopy, it has become possible to study polymerization processes on suitable surfaces at the atomic level and in real space. In the two-dimensional confinement of a surface, polymerization reactions can give rise to the formation of unprecedented poly...

Full description

Saved in:
Bibliographic Details
Published in:Nature chemistry 2020-02, Vol.12 (2), p.115-130
Main Authors: Grill, Leonhard, Hecht, Stefan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the rapid development of scanning probe microscopy, it has become possible to study polymerization processes on suitable surfaces at the atomic level and in real space. In the two-dimensional confinement of a surface, polymerization reactions can give rise to the formation of unprecedented polymers with unique structures and properties, not accessible in solution. After a little over one decade since the discovery of covalent on-surface polymerization, we give an overview of the field, analyse the crucial aspects and critically reflect on the status quo. Specifically, we provide some general considerations about fundamental mechanisms as well as kinetics and thermodynamics of on-surface polymerization processes. The important role of the surface is detailed in view of its ability to control polymer formation with regard to structure, dimensionality and composition. Furthermore, examples that allow for locally induced polymerization are highlighted. Finally, we provide an analysis of scientific challenges in the field and outline future prospects. Growing polymers directly on surfaces has emerged as a powerful tool because it can provide a route to otherwise inaccessible structures such as defect-free linear chains, graphene nanoribbons and two-dimensional networks. This Review Article describes general principles and key aspects of this method from the perspectives of surface science and polymer chemistry.
ISSN:1755-4330
1755-4349
DOI:10.1038/s41557-019-0392-9