Loading…
Animal cognition in the field: performance of wild vervet monkeys (Chlorocebus pygerythrus) on a reversal learning task
Increasingly, researchers are moving animal cognitive research into wild field settings. A field-based approach offers a valuable complement to laboratory-based studies, as it enables researchers to work with animals in their natural environments and indicates whether cognitive abilities found in ca...
Saved in:
Published in: | Animal cognition 2020-05, Vol.23 (3), p.523-534 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Increasingly, researchers are moving animal cognitive research into wild field settings. A field-based approach offers a valuable complement to laboratory-based studies, as it enables researchers to work with animals in their natural environments and indicates whether cognitive abilities found in captive subjects are generalizable to wild animals. It is thus important to field-based research to clarify which cognitive tasks can be replicated in wild settings, which species are suitable for testing in the wild, and whether replication produces similar results in wild animals. To address these issues, we modified a well-known lab test for field applications. The transfer index (TI) is a reversal learning task that tests whether animals rely on more associative or rule-based learning strategies (Rumbaugh in Primate behavior: developments in field and laboratory research. Academic Press, Inc., New York, pp. 2–66, 1970). In this paper, we detail changes needed to use a TI-like task in the field, here referred to as the Field Reversal Index (FRI). We tested a sample of nine wild vervet monkeys (
Chlorocebus pygerythrus
) on the FRI task at Lake Nabugabo, Uganda. We show that wild primates can successfully be tested on reversal learning paradigms, and present findings that reinforce previous conclusions from captive experiments. Our results indicate that vervets, like other cercopithecoids, rely on associative learning rather than rule-based learning. Further, our results are consistent with previous research that reports improved performance post-reversal in younger individuals relative to older individuals. The FRI enables researchers to test animals both in the wild and in captivity to facilitate direct comparisons between the learning abilities of captive and wild animals. |
---|---|
ISSN: | 1435-9448 1435-9456 |
DOI: | 10.1007/s10071-020-01356-5 |