Loading…

Modulation of the hepatic expression of miR-33 and miR-34a possibly mediates the metabolic effects of estrogen in ovariectomized female rats

Estrogen and the estrogen receptors (ERs) are well-known regulators of several aspects of glucose and lipid metabolism. Meanwhile, the underlying mechanistic role of estrogens in regulating metabolic health remains largely unknown. Hence, the study was designed to tackle the possible contribution of...

Full description

Saved in:
Bibliographic Details
Published in:European journal of pharmacology 2020-04, Vol.873, p.173006-173006, Article 173006
Main Authors: Ali, Mennatallah A., Kamel, Maher A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Estrogen and the estrogen receptors (ERs) are well-known regulators of several aspects of glucose and lipid metabolism. Meanwhile, the underlying mechanistic role of estrogens in regulating metabolic health remains largely unknown. Hence, the study was designed to tackle the possible contribution of the hepatic expression of miR-33, miR-21 and miR-34a and their target genes as the underlying mechanism of the metabolic effects of estrogen in ovariectomized rats. Forty female rats were ovariectomized (OVX), treated with estrogen and/or fulvestrant for 28 days and compared with untreated or treated sham operated rats. Estradiol amended the metabolic abnormalities in the OVX rats, witnessed by decreasing blood sugar, insulin and HOMA-IR as well as correcting the disrupted serum and hepatic lipids. Estradiol increased the hepatic expression of miR-33 and inhibited that of miR-34a and miR-21, leading to adjusting the gene expression and the protein level of their targets, sterol regulatory element-binding proteins-1c (SREBP-1c), fatty acid synthase (FASN), high mobility group (HMG) Box Transcription Factor 1 (HBP1) and Sirtuin 1 (SIRT1), receptively. However, estrogen had no significant effects on HBP1 protein. These effects were almost completely inhibited by fulvestrant, an estrogen receptor blocker, to the extent that fulvestrant had similar metabolic disorders to that of ovariectomization. In conclusion, estrogen replacement therapy in OVX females significantly ameliorated the metabolic derangements of insulin resistance, dyslipidemia and hepatic fat accumulation possibly via corrections of hepatic expression of miR-33 and miR-34a; effects that were mediated through the receptor-mediated signaling of ERs as confirmed by fulvestrant. [Display omitted]
ISSN:0014-2999
1879-0712
DOI:10.1016/j.ejphar.2020.173006