Loading…
Distribution patterns of arsenic species in a lichen biomonitor
As stand-alone approaches, chromatographic separations of arsenic in lichen using HPLC-ICP-MS or the use of sequential extractions have historically been shown to have low analyte recoveries and poor analyte selectivity respectively. This study modifies the first step of a sequential extraction with...
Saved in:
Published in: | Chemosphere (Oxford) 2020-07, Vol.250, p.126199-126199, Article 126199 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As stand-alone approaches, chromatographic separations of arsenic in lichen using HPLC-ICP-MS or the use of sequential extractions have historically been shown to have low analyte recoveries and poor analyte selectivity respectively. This study modifies the first step of a sequential extraction with a chromatographic separation of five arsenic species using HPLC-ICP-MS, followed by a three-step sequential extraction and analysis with ICP-MS. The method was applied to lichens from a rural and urban site to demonstrate the applicability thereof, and the sum of arsenic concentrations from the extraction steps were compared to the total arsenic concentrations. Short term species stability of the As species in the lichen matrix was also evaluated over 1 month in the water-extractable fraction, where As species concentrations changed week by week, providing insight into biotransformation mechanisms. In the modified extraction step, dimethylarsinic acid (DMA) and arsenobetaine and an unknown As species (AsB + U1) were statistically (p reducible > water-extractable > residual. Concentrations of total As in the oxidizable and non-bioavailable fraction were statistically lower (p |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2020.126199 |