Loading…
Fluid Brain Glycolysis: Limits, Speed, Location, Moonlighting, and the Fates of Glycogen and Lactate
Glycolysis is the core of intermediate metabolism, an ancient pathway discovered in the heydays of classic biochemistry. A hundred years later, it remains a matter of active research, clinical interest and is not devoid of controversy. This review examines topical aspects of glycolysis in the brain,...
Saved in:
Published in: | Neurochemical research 2020-06, Vol.45 (6), p.1328-1334 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Glycolysis is the core of intermediate metabolism, an ancient pathway discovered in the heydays of classic biochemistry. A hundred years later, it remains a matter of active research, clinical interest and is not devoid of controversy. This review examines topical aspects of glycolysis in the brain, a tissue characterized by an extreme dependence on glucose. The limits of glycolysis are reviewed in terms of flux control by glucose transporters, intercellular lactate shuttling and activity-dependent glycolysis in astrocytes and neurons. What is the site of glycogen mobilization and aerobic glycolysis in brain tissue? We scrutinize the pervasive notions that glycolysis is fast and that catalysis is channeled through supramolecular assemblies. In brain tissue, most glycolytic enzymes are catalytically silent. What then is their function? |
---|---|
ISSN: | 0364-3190 1573-6903 |
DOI: | 10.1007/s11064-020-03005-2 |