Loading…

Adding myofibroblasts to the lacrimal pump

The lacrimal sac (LS) empties in the nasolacrimal duct to drain the tears in the inferior nasal meatus. Different studies indicated the role of the lacrimal pump in the lacrimal drainage. Although controversial, the lacrimal pump mechanism is an extrinsic one, either active, or passive. An intrinsic...

Full description

Saved in:
Bibliographic Details
Published in:Acta histochemica 2020-05, Vol.122 (4), p.151536-151536, Article 151536
Main Authors: Bâră, Raluca Iustina, Voinea, Liliana Mary, Vrapciu, Alexandra Diana, Rusu, Mugurel Constantin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The lacrimal sac (LS) empties in the nasolacrimal duct to drain the tears in the inferior nasal meatus. Different studies indicated the role of the lacrimal pump in the lacrimal drainage. Although controversial, the lacrimal pump mechanism is an extrinsic one, either active, or passive. An intrinsic contractile potential of the LS was not documented previously. We thus aimed a retrospective immunohistochemical study to test the alpha-smooth muscle actin (α-SMA) and h-caldesmon expression in the LS wall. We used archived paraffin-embedded samples of LS from ten adult patients. The α-SMA + phenotype was detected in basal epithelial cells, in subepithelial ribbons of stromal cells, in vascular smooth muscle cells, as well as in pericytes. H-caldesmon was exclusively expressed in pericytes, vascular smooth muscle cells and myoepithelial cells of the subepithelial glands. The most striking feature we found in all samples was a consistent stromal network of α-SMA+/h-caldesmon- myofibroblasts. This finding supports an intrinsic scaffold useful for the lacrimal pump.
ISSN:0065-1281
1618-0372
DOI:10.1016/j.acthis.2020.151536