Loading…

Long-Lasting Actions of Progesterone Protect the Neonatal Brain Following Hypoxia-Ischemia

Neonatal hypoxia–ischemia (HI) is the leading cause of mortality and morbidity in newborns, occurring in approximately 2% of live births. Neuroprotective actions of progesterone (PROG) have already been described in animal models of brain lesions. However, PROG actions on neonates are still controve...

Full description

Saved in:
Bibliographic Details
Published in:Cellular and molecular neurobiology 2020-11, Vol.40 (8), p.1417-1428
Main Authors: Fabres, Rafael Bandeira, Montes, Nathalia Lima, Camboim, Yahi de Menezes, de Souza, Samir Khal, Nicola, Fabrício, Tassinari, Isadora D’Ávila, Ribeiro, Maria Flavia Marques, Netto, Carlos Alexandre, de Fraga, Luciano Stürmer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neonatal hypoxia–ischemia (HI) is the leading cause of mortality and morbidity in newborns, occurring in approximately 2% of live births. Neuroprotective actions of progesterone (PROG) have already been described in animal models of brain lesions. However, PROG actions on neonates are still controversial. Here, we treated male Wistar rats exposed to HI with PROG. Five experimental groups were defined ( n  = 6/group) according to the scheme of PROG administration (10 mg/kg): SHAM (animals submitted to a fictitious surgery, without ischemia induction, and maintained under normoxia), HI (animals undergoing HI), BEFORE (animals undergoing HI and receiving PROG immediately before HI), AFTER (animals undergoing HI and receiving PROG at 6 and 24 h after HI) and BEFORE/AFTER (animals undergoing HI and receiving PROG immediately before and 6 and 24 h after HI). At P14 (7 days following HI), the volumes of lesion of the cerebral hemisphere and the hippocampus ipsilateral to the cerebral ischemia were evaluated, along with p-Akt, cleaved caspase-3 and GFAP expression in the hippocampus. PROG reduces the loss of brain tissue caused by HI. Moreover, when administered after HI, PROG was able to increase p-Akt expression and reduce both cleaved caspase-3 and GFAP expression in the hippocampus. In summary, it was possible to observe a neuroprotective action of PROG on the brain of neonatal animals exposed to experimental HI. This is the first study suggesting PROG-dependent Akt activation is able to regulate negatively cleaved caspase-3 and GFAP expression protecting neonatal hypoxic-ischemic brain tissue from apoptosis and reactive gliosis.
ISSN:0272-4340
1573-6830
DOI:10.1007/s10571-020-00827-0