Loading…

Assessment of the multifactorial causes of atypical femoral fractures using a novel multiscale finite element approach

Atypical femoral fracture (AFF), which is a low energy fracture in the subtrochanteric or diaphysis region of the femur, has multifactorial causes that span macro- to microscale mechanisms including femoral geometry, cortical bone composition and structure. However, the extent of individual and comb...

Full description

Saved in:
Bibliographic Details
Published in:Bone (New York, N.Y.) N.Y.), 2020-06, Vol.135, p.115318-115318, Article 115318
Main Authors: Demirtas, Ahmet, Rajapakse, Chamith S., Ural, Ani
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Atypical femoral fracture (AFF), which is a low energy fracture in the subtrochanteric or diaphysis region of the femur, has multifactorial causes that span macro- to microscale mechanisms including femoral geometry, cortical bone composition and structure. However, the extent of individual and combined influence of these factors on AFF is still not well understood. As a result, the aim of this study is to develop a multiscale fracture mechanics-based finite element modeling framework that is capable of quantifying the individual and combined influence of macroscale femoral geometrical properties as well as cortical bone microscale material properties and structure on AFF. In this study, three different femoral geometries with two different cortical bone microstructures, and two different material property distributions were investigated by first determining the critical AFF locations in the femur using macroscale stress analysis and then performing coupled macro-microscale fracture simulations. The simulation results showed that femoral geometry led to substantial differences in crack growth independent of cortical microstructure and tissue level material properties. The results suggest that multiple femoral geometrical properties, including neck-shaft angle and curvature, may contribute to the fracture behavior at AFF sites rather than a single macroscale geometrical feature. Osteonal area had a significant effect on microcrack propagation at AFF sites independent of microscale material property distribution and femoral geometry. In addition, cortical bone tissue level material heterogeneity improved the fracture resistance independent of femoral geometry and cortical microstructure. In summary, the computational approach developed in this study identified the individual, combined, and relative influence of multiscale factors on AFF risk. The new framework developed in this study could help identify the governing multiscale mechanisms of AFF and bring additional insight into the possible association of long-term bisphosphate treatment with AFF. [Display omitted] •A multiscale fracture mechanics-based finite element model of AFF was developed.•Multiple femoral geometrical properties influenced AFF rather than a single feature.•An increase in osteonal area improved the fracture resistance at AFF sites.•Increased material property heterogeneity increased the resistance to AFF.
ISSN:8756-3282
1873-2763
DOI:10.1016/j.bone.2020.115318