Loading…

SOMprocessor: A high throughput FPGA-based architecture for implementing Self-Organizing Maps and its application to video processing

The design of neuromorphic chips aims to develop electronic circuits dedicated to executing artificial neural networks, mainly by exploring parallel processing. Unsupervised learning models, such as Self-organizing Maps (SOM), may benefit from massively concurrent hardware-based implementations to m...

Full description

Saved in:
Bibliographic Details
Published in:Neural networks 2020-05, Vol.125, p.349-362
Main Authors: Sousa, Miguel Angelo de Abreu de, Pires, Ricardo, Del-Moral-Hernandez, Emilio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The design of neuromorphic chips aims to develop electronic circuits dedicated to executing artificial neural networks, mainly by exploring parallel processing. Unsupervised learning models, such as Self-organizing Maps (SOM), may benefit from massively concurrent hardware-based implementations to meet the requirements of real-time and embedded applications. This work first presents a theoretical analysis of the algorithms implemented in hardware to compute SOM learning and recall phases. This is important because, albeit similar, the processing steps executed in hardware are not necessarily identical to those executed in software. Then, the proposed FPGA architecture entitled SOMprocessor is shown in detail. The circuit of the processor explores two different computational strategies for increasing the performance of current state-of-the-art works. These computational strategies aim to improve the data flow through the processor and its flexibility to implement different network topologies. Finally, this work presents the application of the SOMprocessor to a video categorization task. The results show that topographic and quantization errors are similar between hardware and software implementations, as well as the overall accuracy. Moreover, the proposed FPGA architecture achieves acceleration of 3 to 4 orders of magnitude as compared to CPU executions.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2020.02.019