Loading…
A novel approach for high-level expression and purification of GST-fused highly thermostable Taq DNA polymerase in Escherichia coli
Polymerases are enzymes that synthesize long chains or polymers of nucleic acids including DNA or RNA from nucleotides. They assemble nucleic acids by copying a DNA or RNA template strand using base-pairing interactions. One of the polymerase enzymes, Taq DNA polymerase, originally isolated from The...
Saved in:
Published in: | Archives of microbiology 2020-08, Vol.202 (6), p.1449-1458 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polymerases are enzymes that synthesize long chains or polymers of nucleic acids including DNA or RNA from nucleotides. They assemble nucleic acids by copying a DNA or RNA template strand using base-pairing interactions. One of the polymerase enzymes,
Taq
DNA polymerase, originally isolated from
Thermus aquaticus
(
Taq
) is a widely used enzyme in molecular biology so far. The thermostable properties of this enzyme have contributed majorly to the specificity, automation, and efficacy of the polymerase chain reaction (PCR), making it a powerful tool for today’s molecular biology researches across the globe. The purification of
Taq
DNA polymerase from the native host results in low yield, more labor and time consumption. Therefore, many studies have been previously conducted to obtain this enzyme using alternative hosts. So far, all the existing methodologies are more laborious, time-consuming and require heavy expense. We used a novel approach to purify the enzyme with relatively high efficiency, yield and minimum time consumption using
Escherichia coli
(
E. coli
) as an alternative host. We cloned a 2500 base pair
Taq
DNA polymerase gene into pGEX-4T-1 vector, containing a GST-tag, downstream of tac promoter and overexpressed it using isopropyl β-d-1-thiogalactopyranoside (IPTG) as an inducer. The enzyme was efficiently purified using novel chromatography approaches and was used in routine PCR assays in our laboratory. Our findings suggest a novel approach to facilitate the availability of polymerases for molecular and diagnostic studies. In the future, it may be used for the purification of other recombinant peptides or proteins used in structural biology and proteomics-based researches. |
---|---|
ISSN: | 0302-8933 1432-072X |
DOI: | 10.1007/s00203-020-01860-9 |