Loading…

Annotation of tandem mass spectrometry data using stochastic neural networks in shotgun proteomics

Abstract Motivation The discrimination ability of score functions to separate correct from incorrect peptide-spectrum-matches in database-searching-based spectrum identification is hindered by many superfluous peaks belonging to unexpected fragmentation ions or by the lacking peaks of anticipated fr...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics 2020-06, Vol.36 (12), p.3781-3787
Main Authors: Sulimov, Pavel, Voronkova, Anastasia, Kertész-Farkas, Attila
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Motivation The discrimination ability of score functions to separate correct from incorrect peptide-spectrum-matches in database-searching-based spectrum identification is hindered by many superfluous peaks belonging to unexpected fragmentation ions or by the lacking peaks of anticipated fragmentation ions. Results Here, we present a new method, called BoltzMatch, to learn score functions using a particular stochastic neural networks, called restricted Boltzmann machines, in order to enhance their discrimination ability. BoltzMatch learns chemically explainable patterns among peak pairs in the spectrum data, and it can augment peaks depending on their semantic context or even reconstruct lacking peaks of expected ions during its internal scoring mechanism. As a result, BoltzMatch achieved 50% and 33% more annotations on high- and low-resolution MS2 data than XCorr at a 0.1% false discovery rate in our benchmark; conversely, XCorr yielded the same number of spectrum annotations as BoltzMatch, albeit with 4–6 times more errors. In addition, BoltzMatch alone does yield 14% more annotations than Prosit (which runs with Percolator), and BoltzMatch with Percolator yields 32% more annotations than Prosit at 0.1% FDR level in our benchmark. Availability and implementation BoltzMatch is freely available at: https://github.com/kfattila/BoltzMatch. Contact akerteszfarkas@hse.ru Supporting information Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btaa206