Loading…
Connection between BosonSampling with quantum and classical input states
BosonSampling is a problem of sampling events according to the transition probabilities of indistinguishable photons in a linear optical network. Computational hardness of BosonSampling depends on photon-number statistics of the input light. BosonSampling with multi-photon Fock states at the input i...
Saved in:
Published in: | Optics express 2020-03, Vol.28 (5), p.6929-6936 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | BosonSampling is a problem of sampling events according to the transition probabilities of indistinguishable photons in a linear optical network. Computational hardness of BosonSampling depends on photon-number statistics of the input light. BosonSampling with multi-photon Fock states at the input is believed to be classically intractable but there exists an efficient classical algorithm for classical input states. In this paper, we present a mathematical connection between BosonSampling with quantum and classical light inputs. Specifically, we show that the generating function of a transition probability for Fock-state BosonSampling (FBS) can be expressed as a transition probability of thermal-light inputs. The closed-form expression of a thermal-light transition probability allows all possible transition probabilities of FBS to be obtained by calculating a single matrix permanent. Moreover, the transition probability of FBS is shown to be expressed as an integral involving a Gaussian function multiplied by a Laguerre polynomial, resulting in a fast oscillating integrand. Our work sheds new light on computational hardness of FBS by identifying the mathematical connection between BosonSampling with quantum and classical light. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.384973 |