Loading…

3D high resolution generative deep-learning network for fluorescence microscopy imaging

Microscopic fluorescence imaging serves as a basic tool in many research areas including biology, medicine, and chemistry. With the help of optical clearing, large volume imaging of a mouse brain and even a whole body has been enabled. However, constrained by the physical principles of optical imagi...

Full description

Saved in:
Bibliographic Details
Published in:Optics letters 2020-04, Vol.45 (7), p.1695-1698
Main Authors: Zhou, Hang, Cai, Ruiyao, Quan, Tingwei, Liu, Shijie, Li, Shiwei, Huang, Qing, Ertürk, Ali, Zeng, Shaoqun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microscopic fluorescence imaging serves as a basic tool in many research areas including biology, medicine, and chemistry. With the help of optical clearing, large volume imaging of a mouse brain and even a whole body has been enabled. However, constrained by the physical principles of optical imaging, volume imaging has to balance imaging resolution and speed. Here, we develop a new, to the best of our knowledge, 3D deep learning network based on a dual generative adversarial network (dual-GAN) framework for recovering high-resolution (HR) volume images from high speed acquired low-resolution (LR) volume images. The proposed method does not require a precise image registration process and meanwhile guarantees the predicted HR volume image faithful to its corresponding LR volume image. The results demonstrated that our method can recover ${20} {\times} /1.0\text-{\rm NA}$20×/1.0-NA volume images from coarsely registered ${5} {\times} /0.16\text-{\rm NA}$5×/0.16-NA volume images collected by light-sheet microscopy. This method would provide great potential in applications which require high resolution volume imaging.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.387486