Loading…

High-energy self-mode-locked Cr:forsterite laser near the soliton blowup threshold

At the level of peak powers needed for a Kerr-lens mode-locked operation of solid-state soliton short-pulse lasers, a periodic perturbation induced by spatially localized pulse amplification in a laser cavity can induce soliton instability with respect to resonant dispersive-wave radiation, eventual...

Full description

Saved in:
Bibliographic Details
Published in:Optics letters 2020-04, Vol.45 (7), p.1890-1893
Main Authors: Ivanov, Anatoly A, Martynov, Grigoriy N, Lanin, Aleksandr A, Fedotov, Andrei B, Zheltikov, Aleksei M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:At the level of peak powers needed for a Kerr-lens mode-locked operation of solid-state soliton short-pulse lasers, a periodic perturbation induced by spatially localized pulse amplification in a laser cavity can induce soliton instability with respect to resonant dispersive-wave radiation, eventually leading to soliton blowup and pulse splitting of the laser output. Here, we present an experimental study of a high-peak-power self-mode-locking Cr:forsterite laser, showing that, despite its complex, explosion-like buildup dynamics, this soliton blowup can be captured and quantitatively characterized via an accurate cavity-dispersion- and gain-resolved analysis of the laser output. We demonstrate that, with a suitable cavity design and finely tailored balance of gain, dispersion, and nonlinearity, such a laser can be operated in a subcritical mode, right beneath the soliton blowup threshold, providing an efficient source of sub-100-fs 15-20 MHz repetition-rate pulses with energies as high as 33 nJ.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.384850