Loading…
Anti-Salmonella mode of action of natural l-phenyl lactic acid purified from Lactobacillus plantarum ZJ316
Salmonella is a serious foodborne pathogen responsible for more than 90 million cases of gastroenteritis worldwide annually. Due to the gradual increase in antibiotic-resistant Salmonella strains, the identification of natural antibacterial substances is urgently needed. Herein, we purified natural...
Saved in:
Published in: | Applied microbiology and biotechnology 2020-06, Vol.104 (12), p.5283-5292 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Salmonella
is a serious foodborne pathogen responsible for more than 90 million cases of gastroenteritis worldwide annually. Due to the gradual increase in antibiotic-resistant
Salmonella
strains, the identification of natural antibacterial substances is urgently needed. Herein, we purified natural
l
-phenyl lactic acid (L-PLA) from
Lactobacillus plantarum
ZJ316 and revealed its antimicrobial mode against
Salmonella enterica
subsp.
enterica
ATCC 14028. L-PLA (98.14% pure) was obtained using the macroporous resin XAD-16, solid-phase extraction (SPE), reverse-phase high-performance liquid chromatography (RP-HPLC), and chiral chromatography. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results showed that the cell morphology was severely compromised. Transmembrane electrical potential (ΔΨ), transmembrane pH gradient (ΔpH), intracellular ATP level, extracellular electrical conductivity (EC), and genomic DNA analyses were employed to evaluate the antibacterial mode of action of L-PLA. The proton motive force (PMF) and ATP of
Salmonella
cells rapidly dissipated, and the EC markedly increased. The gel retardation assay demonstrated that L-PLA could bind to genomic DNA and intercalate into the nucleic acids. The anti-
Salmonella
mode of action of L-PLA was attributed to the destruction of the cell membrane and genomic DNA binding. This research suggests that L-PLA has potential applications as an antimicrobial agent in food, medicine, and other fields.
Key Points
• Natural L-PLA was purified from L. plantarum ZJ316 with a purity of 98.14%.
• L-PLA effectively inhibited Salmonella strains by antibacterial activities and MICs.
• Membrane destruction and binding with DNA are the anti-Salmonella modes of L-PLA. |
---|---|
ISSN: | 0175-7598 1432-0614 |
DOI: | 10.1007/s00253-020-10503-4 |