Loading…

Integrating the Pillared-Layer Strategy and Pore-Space Partition Method to Construct Multicomponent MOFs for C2H2/CO2 Separation

Introducing multiclusters and multiligands (mm) in a well-defined array will greatly increase the diversity of metal–organic frameworks (MOFs). Here, a series of porous mm-MOFs constructed from a pillared-layer and pore-space partition (PL-PSP) have been achieved. FJU-6 with {Co3}-cluster-based shee...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2020-05, Vol.142 (20), p.9258-9266
Main Authors: Liu, Lizhen, Yao, Zizhu, Ye, Yingxiang, Yang, Yike, Lin, Quanjie, Zhang, Zhangjing, O’Keeffe, Michael, Xiang, Shengchang
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Introducing multiclusters and multiligands (mm) in a well-defined array will greatly increase the diversity of metal–organic frameworks (MOFs). Here, a series of porous mm-MOFs constructed from a pillared-layer and pore-space partition (PL-PSP) have been achieved. FJU-6 with {Co3}-cluster-based sheets and {Co6}-cluster-based pillars exhibits new (3,9,12)-connected llz topology. By using the substituted analogues of the ligands and metal ions, seven isoreticular mm-MOFs (FJU-6-X, X = PTB, TATB, Me-INA, F-INA, NDC, BrBDC, Ni) have been synthesized with the adjustable BET surface areas ranging from 731 to 1306 m2/g as well as the adsorption capacity of CO2 increasing by 77%. The C2H2/CO2 mixture can be effectively separated in the breakthrough experiments in the fixed bed filled with solid FJU-6-TATB at ambient temperature. In all, integrating pillared-layer strategy and pore-space partitioning is effective at constructing mm-MOFs with multivariate environments for the optimization of gas adsorption and separation.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.0c00612