Loading…

Bifurcations of two-dimensional channel flows

In this paper we study some instabilities and bifurcations of two-dimensional channel flows. We use analytical, numerical and experimental methods. We start by recapitulating some basic results in linear and nonlinear stability and drawing a connection with bifurcation theory. We then examine Jeffer...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 1986-10, Vol.171 (1), p.263-287
Main Authors: Sobey, Ian J., Drazin, Philip G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we study some instabilities and bifurcations of two-dimensional channel flows. We use analytical, numerical and experimental methods. We start by recapitulating some basic results in linear and nonlinear stability and drawing a connection with bifurcation theory. We then examine Jeffery–Hamel flows and discover new results about the stability of such flows. Next we consider two-dimensional indented channels and their symmetric and asymmetric flows. We demonstrate that the unique symmetric flow which exists at small Reynolds number is not stable at larger Reynolds number, there being a pitchfork bifurcation so that two stable asymmetric steady flows occur. At larger Reynolds number we find as many as eight asymmetric stable steady solutions, and infer the existence of another seven unstable solutions. When the Reynolds number is sufficiently large we find time-periodic solutions and deduce the existence of a Hopf bifurcation. These results show a rich and unexpected structure to solutions of the Navier–Stokes equations at Reynolds numbers of less than a few hundred.
ISSN:0022-1120
1469-7645
DOI:10.1017/S0022112086001441