Loading…
Pulsed electric field application reduces carbapenem- and colistin-resistant microbiota and blaKPC spread in urban wastewater
Wastewater flows from metropolitan areas, especially those with healthcare inputs, can serve as transport reservoirs for the dissemination of clinically-relevant antimicrobial resistant bacteria (ARB) such as carbapenem- (CR) and colistin-resistant (CoR) strains. Pulsed electric field (PEF) is an em...
Saved in:
Published in: | Journal of environmental management 2020-07, Vol.265, p.110529-110529, Article 110529 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wastewater flows from metropolitan areas, especially those with healthcare inputs, can serve as transport reservoirs for the dissemination of clinically-relevant antimicrobial resistant bacteria (ARB) such as carbapenem- (CR) and colistin-resistant (CoR) strains. Pulsed electric field (PEF) is an emerging wastewater management tool for reducing bacterial loads without generating environmentally harmful byproducts, but it's ability to reduce ARB and their genetic determinants is not well reported. We collected 86, 10-L raw wastewater influent samples from a large metropolitan wastewater treatment plant in Columbus, Ohio and subjected them to low (34 kV cm−1 for 67 μsec) and high (36 kV cm−1 for 89 μsec) PEF treatment. We quantified the PEF effectiveness by measuring concentrations of total coliform bacteria, CR and CoR bacteria, and the epidemic carbapenemase gene, blaKPC, before and after PEF treatment. Utilizing marginal linear regression models with generalized estimating equations, we observed that low and high PEF treatment resulted in a 1.94 (95% CI 2.06–1.81; P |
---|---|
ISSN: | 0301-4797 1095-8630 |
DOI: | 10.1016/j.jenvman.2020.110529 |