Loading…

Interaction of Aspergillus flavus and A. parasiticus with Salmonella spp. isolated from peanuts

Although Aspergillus flavus and Aspergillus parasiticus are the main microorganisms of concern in peanuts, due to aflatoxin contamination, several Salmonella outbreaks from this product have been reported over the last ten decades. Thus, it is important to understand the relationship between microor...

Full description

Saved in:
Bibliographic Details
Published in:International journal of food microbiology 2020-09, Vol.328, p.108666-108666, Article 108666
Main Authors: von Hertwig, Aline Morgan, Iamanaka, Beatriz Thie, Amorim Neto, Dionísio Pedro, Rezende, Josiane Bueno de, Martins, Ligia Manoel, Taniwaki, Marta Hiromi, Nascimento, Maristela Silva
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although Aspergillus flavus and Aspergillus parasiticus are the main microorganisms of concern in peanuts, due to aflatoxin contamination, several Salmonella outbreaks from this product have been reported over the last ten decades. Thus, it is important to understand the relationship between microorganisms to predict, manage and estimate the diversity in the peanut supply chain. The purpose of this study was to evaluate aflatoxin production during the co-cultivation of Aspergillus section Flavi and Salmonella both isolated from peanuts. Three strains of A. section Flavi: A. flavus producing aflatoxin B, A. flavus non-producing aflatoxin and A. parasiticus producing aflatoxin B and G were co-cultivated with seven serotypes of Salmonella of which six were isolated from the peanut supply chain (S. Muenster, S. Miami, S. Glostrup, S. Javiana, S. Oranienburg and S. Yoruba) and one was S. Typhimurium ATCC 14028. First of all, each Salmonella strain was inoculated by pour plate (ca. 5 log cfu/mL) in PDA (potato dextrose agar). Then, each pre-cultured fungus was inoculated in the center of the petri dish. The plates were incubated at 30 °C and the fungal colony diameter was measured once a day for 7 days. As a control each Aspergillus strain was cultivated in the absence of Salmonella culture. All three strains of Aspergillus with absence of Salmonella (control) reached the maximum colony diameter and their growth rate was influenced when co-cultivated (p 
ISSN:0168-1605
1879-3460
DOI:10.1016/j.ijfoodmicro.2020.108666