Loading…
Practical Applications of Deep Learning To Impute Heterogeneous Drug Discovery Data
Contemporary deep learning approaches still struggle to bring a useful improvement in the field of drug discovery because of the challenges of sparse, noisy, and heterogeneous data that are typically encountered in this context. We use a state-of-the-art deep learning method, Alchemite, to impute da...
Saved in:
Published in: | Journal of chemical information and modeling 2020-06, Vol.60 (6), p.2848-2857 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Contemporary deep learning approaches still struggle to bring a useful improvement in the field of drug discovery because of the challenges of sparse, noisy, and heterogeneous data that are typically encountered in this context. We use a state-of-the-art deep learning method, Alchemite, to impute data from drug discovery projects, including multitarget biochemical activities, phenotypic activities in cell-based assays, and a variety of absorption, distribution, metabolism, and excretion (ADME) endpoints. The resulting model gives excellent predictions for activity and ADME endpoints, offering an average increase in
of 0.22 versus quantitative structure-activity relationship methods. The model accuracy is robust to combining data across uncorrelated endpoints and projects with different chemical spaces, enabling a single model to be trained for all compounds and endpoints. We demonstrate improvements in accuracy on the latest chemistry and data when updating models with new data as an ongoing medicinal chemistry project progresses. |
---|---|
ISSN: | 1549-9596 1549-960X |
DOI: | 10.1021/acs.jcim.0c00443 |