Loading…
Chronic elevation of renal venous pressure induces extensive renal venous collateral formation and modulates renal function and cardiovascular stability in rats
Acutely increased renal venous pressure (RVP) impairs renal function, but the long-term impact is unknown. We investigated whether chronic RVP elevation impairs baseline renal function and prevents exacerbation of renal dysfunction and cardiovascular instability upon further RVP increase. RVP elevat...
Saved in:
Published in: | American journal of physiology. Renal physiology 2020-07, Vol.319 (1), p.F76-F83 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Acutely increased renal venous pressure (RVP) impairs renal function, but the long-term impact is unknown. We investigated whether chronic RVP elevation impairs baseline renal function and prevents exacerbation of renal dysfunction and cardiovascular instability upon further RVP increase. RVP elevation (20–25 mmHg) or sham operation (sham) was performed in rats. After 1 wk ( n = 17) or 3 wk ( n = 22), blood pressure, RVP, renal blood flow (RBF), renal vascular conductance (RVC), and glomerular filtration rate (GFR) were measured at baseline and during superimposed RVP increase. Chronic RVP elevation induced extensive renal venous collateral formation. RVP fell to 6 ± 1 mmHg at 1 wk and 3 ± 1 mmHg at 3 wk. Baseline blood pressure and heart rate were unaltered compared with sham. RBF, RVC, and GFR were reduced at 1 wk but normalized by 3 wk. Upon further RVP increase, the drop in mean arterial pressure was attenuated at 3 wk compared with 1 wk ( P < 0.05), whereas heart rate fell comparably across all groups; the mean arterial pressure-heart rate relationship was disrupted at 1 and 3 wk. RBF fell to a similar degree as sham at 1 wk (−2.3 ± 0.7 vs. −3.9 ± 1.2 mL/min, P = 0.066); however, at 3 wk, this was attenuated compared with sham (−1.5 ± 0.5 vs. −4.2 ± 0.7 mL/min, P < 0.05). The drop in RVC and GFR was attenuated at 1 and 3 wk ( P < 0.05). Thus, chronic RVP elevation induced by partial renal vein ligation elicits extensive renal venous collateral formation, and although baseline renal function is impaired, chronic RVP elevation in this manner induces protective adaptations in kidneys of healthy rats, which attenuates the hemodynamic response to further RVP increase. |
---|---|
ISSN: | 1931-857X 1522-1466 |
DOI: | 10.1152/ajprenal.00542.2019 |