Loading…
High-Efficiency Cellular Reprogramming by Nanoscale Puncturing
Induced pluripotent stem cells (iPSCs) bear great potential for disease modeling, drug discovery, and regenerative medicine; however, the wide adoption of iPSC for clinically relevant applications has been hindered by the extremely low reprogramming efficiency. Here, we describe a high-efficiency ce...
Saved in:
Published in: | Nano letters 2020-07, Vol.20 (7), p.5473-5481 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Induced pluripotent stem cells (iPSCs) bear great potential for disease modeling, drug discovery, and regenerative medicine; however, the wide adoption of iPSC for clinically relevant applications has been hindered by the extremely low reprogramming efficiency. Here, we describe a high-efficiency cellular reprogramming strategy by puncturing cells with an array of diamond nanoneedles, which is applied to temporally disrupt the cell membrane in a reversible and minimally invasive format. This method enables high-efficiency cytoplasmic delivery of mini-intronic plasmid vectors to initiate the conversion of human fibroblast cells to either primed iPSCs or naı̈ve iPSCs. The nanopuncturing operation is directly performed on cells in adherent culture without any cell lift-off and is completed within just 5 min. The treated cells are then cultured in feeder-free medium to achieve a reprogramming efficiency of 1.17 ± 0.28%, which is more than 2 orders of magnitude higher than the typical results from common methods involving plasmid delivery. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.0c01979 |