Loading…
Electric field‐induced changes in biomechanical properties in human dermal fibroblasts and a human skin equivalent
Purpose An electric field (EF) can be used to change the mechanical properties of cells and skin tissues. We demonstrate EF‐induced elasticity changes in human dermal fibroblasts (HDFs) and a human skin equivalent and identify the underlying principles related to the changes. Methods HDFs and human...
Saved in:
Published in: | Skin research and technology 2020-11, Vol.26 (6), p.914-922 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
An electric field (EF) can be used to change the mechanical properties of cells and skin tissues. We demonstrate EF‐induced elasticity changes in human dermal fibroblasts (HDFs) and a human skin equivalent and identify the underlying principles related to the changes.
Methods
HDFs and human skin equivalent were stimulated with electric fields of 1.0 V/cm. Change in cellular elasticity was determined by using atomic force microscopy. Effects of EF on the biomechanical and chemical properties of a human skin equivalent were analyzed. In cells and tissues, the effects of EF on biomarkers of cellular elasticity were investigated at the gene and protein levels.
Results
In HDFs, the cellular elasticity was increased and the expression of biomarkers of cellular elasticity was regulated by the EF. Expression of the collagen protein in the human skin equivalent was changed by EF stimulation; however, changes in density and microstructure of the collagen fibrils were not significant. The viscoelasticity of the human skin equivalent increased in response to EF stimulation, but molecular changes were not observed in collagen.
Conclusions
Elasticity of cells and human skin equivalent can be regulated by electrical stimulation. Especially, the change in cellular elasticity was dependent on cell age. |
---|---|
ISSN: | 0909-752X 1600-0846 |
DOI: | 10.1111/srt.12894 |