Loading…
Temperature-Induced Lifshitz Transition and Possible Excitonic Instability in ZrSiSe
The nodal-line semimetals have attracted immense interest due to the unique electronic structures such as the linear dispersion and the vanishing density of states as the Fermi energy approaching the nodes. Here, we report temperature-dependent transport and scanning tunneling microscopy (spectrosco...
Saved in:
Published in: | Physical review letters 2020-06, Vol.124 (23), p.1-236601, Article 236601 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The nodal-line semimetals have attracted immense interest due to the unique electronic structures such as the linear dispersion and the vanishing density of states as the Fermi energy approaching the nodes. Here, we report temperature-dependent transport and scanning tunneling microscopy (spectroscopy) [STM(S)] measurements on nodal-line semimetal ZrSiSe. Our experimental results and theoretical analyses consistently demonstrate that the temperature induces Lifshitz transitions at 80 and 106 K in ZrSiSe, which results in the transport anomalies at the same temperatures. More strikingly, we observe a V-shaped dip structure around Fermi energy from the STS spectrum at low temperature, which can be attributed to co-effect of the spin-orbit coupling and excitonic instability. Our observations indicate the correlation interaction may play an important role in ZrSiSe, which owns the quasi-two-dimensional electronic structures. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.124.236601 |